欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    RAID的种类优缺点.docx

    • 资源ID:3165230       资源大小:46.67KB        全文页数:16页
    • 资源格式: DOCX        下载积分:6.99金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要6.99金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    RAID的种类优缺点.docx

    RAID的种类优缺点RAID的种类 RAID的英文全称为Redundant Array of Inexpensive Disks。中文名称是廉价磁盘冗余阵列。RAID的初衷主要是为了大型服务器提供高端的存储功能和冗余的数据安全。在系统中,RAID被看作是一个逻辑分区,但是它是由多个硬盘组成的。它通过在多个硬盘上同时存储和读取数据来大幅提高存储系统的数据吞吐量,而且在很多RAID模式中都有较为完备的相互校验/恢复的措施,甚至是直接相互的镜像备份,从而大大提高了RAID系统的容错度,提高了系统的稳定冗余性,这也是Redundant一词的由来。 RAID-0等级 Striped Disk Array without Fault Tolerance(没有容错设计的条带磁盘阵列) 图中一个圆柱就是一块磁盘,它们并联在一起。从图中可以看出,RAID 0在存储数据时由RAID控制器分割成大小相同的数据条,同时写入阵列中的磁盘。如果发挥一下想象力,你会觉得数据象一条带子横跨过所有的阵列磁盘,每个磁盘上的条带深度则是一样的。至于每个条带的深度则要看所采用的RAID类型,在NT系统的软RAID 0等级中,每个条带深度只有64KB一种选项,而在硬RAID 0等级,可以提供8、16、32、64以及128KB等多种深度参数。Striped是RAID的一种典型方式,在很多RAID术语解释中,都把Striped指向RAID 0。在读取时,也是顺序从阵列磁盘中读取后再由RAID控制器进行组合再传送给系统,这也是RAID的一个最重要的特点。 RAID-0结构图解 这样,数据就等于并行的写入和读取,从而非常有助于提高存储系统的性能。对于两个硬盘的RAID 0系统,提高一倍的读写性能可能有些夸张,毕竟要考虑到也同时缯加的数据分割与组合等与RAID相关的操作处理时间,但比单个硬盘提高50%的性能是完全可以的。 不过,RAID 0还不能算是真正的RAID,因为它没有数据冗余能力。由于没有备份或校验恢复设计,在RAID 0阵列中任何一个硬盘损坏就可导致整个阵列数据的损坏,因为数据都是分布存储的。下面总结一下RAID 0的特点: RAID-1等级 Mirroring and Duplexing 对比RAID 0等级,我们能发现硬盘的内容是两两相同的。这就是镜像两个硬盘的内容完全一样,这等于内容彼此备份。比如阵列中有两个硬盘,在写入时,RAID控制器并不是将数据分成条带而是将数据同时写入两个硬盘。这样,其中任何一个硬盘的数据出现问题,可以马上从另一个硬盘中进行恢复。注意,这两个硬盘并不是主从关系,也就是说是相互镜像/恢复的。 RAID-1结构图解 RAID 1已经可以算是一种真正的RAID系统,它提供了强有力的数据容错能力,但这是由一个硬盘的代价所带来的效果,而这个硬盘并不能增加整个阵列的有效容量。下面总结一下RAID 1的特点: RAID-2等级 Hamming Code ECC 现在我们要接触到RAID系统中最为复杂的等级之一。RAID 2之所以复杂就是因为它采用了早期的错误检测与修正技术汉明码校验技术。因此在介绍RAID 2之前有必要讲讲汉明码的原理。 汉明码的原理: 针对4位数据的汉明码编码示意图 汉明码是一个在原有数据中插入若干校验码来进行错误检查和纠正的编码技术。以典型的4位数据编码为例,汉明码将加入3个校验码,从而使实际传输的数据位达到7个,它们的位置如果把上图中的位置横过来就是: 数据位 代码 说明 汉明码 汉明码 数据码 汉明码 数据码 数据码 数据码 注:Dx中的x是2的整数幂结果,多少幂取决于码位,D1是0次幂,D8是3次幂,想想二进制编码就知道了 现以数据码1101为例讲讲汉明码的编码原理,此时D8=1、D4=1、D2=0、D1=1,在P1编码时,先将D8、D4、D1的二进制码相加,结果为奇数3,汉明码对奇数结果编码为1,偶数结果为0,因此P1值为1,D8+D2+D1=2,为偶数,那么P2值为0,D4+D2+D1=2,为偶数,P3值为0。这样,参照上文的位置表,汉明码处理的结果就是1010101。在这个4位数据码的例子中,我们可以发现每个汉明码都是以三个数据码为基准进行编码的。下面就是它们的对应表: 汉明码 P1 P2 P3 编码用的数据码 D8、D4、D1 D8、D2、D1 D4、D2、D1 1 P1 第1个2 P2 第2个3 D8 第1个4 P3 第3个5 D4 第2个6 D2 第3个7 D1 第4个从编码形式上,我们可以发现汉明码是一个校验很严谨的编码方式。在这个例子中,通过对4个数据位的3个位的3次组合检测来达到具体码位的校验与修正目的。在校验时则把每个汉明码与各自对应的数据位值相加,如果结果为偶数就是正确,如果为奇数则说明当前汉明码所对应的三个数据位中有错误,此时再通过其他两个汉明码各自的运算来确定具体是哪个位出了问题。 还是刚才的1101的例子,正确的编码应该是1010101,如果第三个数据位在传输途中因干扰而变成了1,就成了1010111。检测时,P1+D8+D4+D1的结果是偶数4,第一位纠错代码为0,正确。P1+D8+D2+D1的结果是奇数3,第二位纠错代码为1,有错误。P3+D4+D2+D1的结果是奇数3,第三但纠错代码代码为1,有错误。那么具体是哪个位有错误呢?三个纠错代码从高到低排列为二进制编码110,换算成十进制就是6,也就是说第6位数据错了,而数据第三位在汉明码编码后的位置正好是第6位。 那么汉明码的数量与数据位的数量之间有何比例呢?上面的例子中数据位是4位,加上3位汉明码是7位,而2的3次幂是8。这其中就存在一个规律,即2PP+D+1,其中P代表汉明码的个数,D代表数据位的个数,比如4位数据,加上1就是5,而能大于5的2的幂数就是3。这样,我们就能算出任何数据位时所需要的汉明码位数:7位数据时需要4位汉明码,64位数据时就需要7位汉明码,大家可以依此推算。此时,它们的编码规也与4位时不一样了。 另外,汉明码加插的位置也是有规律的。以四位数据为例,第一个是汉明码是第一位,第二个是第二位,第三个是第四位,1、2、4都是2的整数幂结果,而这个幂次数是从0开始的整数。这样我们可以推断出来,汉明码的插入位置为1、2、4、8、16、32 说完汉明码,下面就开始介绍RAID 2等级。 RAID 2等级介绍: 32RAID-2结构图解 由于汉明码是位为基础进行校验的,那么在RAID2中,一个硬盘在一个时间只存取一位的信息。没错,就是这么恐怖。如图中所示,左边的为数据阵列,阵列中的每个硬盘一次只存储一个位的数据。同理,右边的阵列则是存储相应的汉明码,也是一位一个硬盘。所以RAID 2中的硬盘数量取决于所设定的数据存储宽度。如果是4位的数据宽度,那么就需要4个数据硬盘和3个汉明码校验硬盘,如果是64位的位宽呢?从上文介绍的计算方法中,就可以算出来,数据阵列需要64块硬盘,校验阵列需要7块硬盘。 在写入时,RAID 2在写入数据位同时还要计算出它们的汉明码并写入校验阵列,读取时也要对数据即时地进行校验,最后再发向系统。通过上文的介绍,我们知道汉明码只能纠正一个位的错误,所以RAID 2也只能允许一个硬盘出问题,如果两个或以上的硬盘出问题,RAID 2的数据就将受到破坏。但由于数据是以位为单位并行传输,所以传输率也相当快。 RAID 2是早期为了能进行即时的数据校验而研制的一种技术,从它的设计上看也是主要为了即时校验以保证数据安全,针对了当时对数据即时安全性非常敏感的领域,如服务器、金融服务等。但由于花费太大,成本昂贵,目前已基本不再使用,转而以更高级的即时检验RAID所代替,如RAID 3、5等。 现在让我们总结一下RAID 2的特点: RAID-3等级 Parallel transfer with parity RAID 2等级的缺点相信大家已经很明白了,虽然能进行即时的ECC,但成本极为昂贵。为此,一种更为先进的即时ECC的RAID等级诞生,这就是RAID 3。RAID 3是在RAID 2基础上发展而来的,主要的变化是用相对简单的异或逻辑运算校验代替了相对复杂的汉明码校验,从而也大幅降低了成本。XOR的校验原理如下表: A值 B值 XOR结果 0 1 0 1 0 0 1 1 0 1 1 0 这里的A与B值就代表了两个位,从中可以发现,A与B一样时,XOR结果为0,A与B不一样时,XOR结果就是1,而且知道XOR结果和A与B中的任何一个数值,就可以反推出另一个数值。比如A为1,XOR结果为1,那么B肯定为0,如果XOR结果为0,那么B肯定为1。这就是XOR编码与校验的基本原理。 RAID 3的结构图如下: RAID-3结构图解 从图中可以发现,校验盘只有一个,而数据与RAID 0一样是分成条带存入数据阵列中,这个条带的深度的单位为字节而不再是bit了。在数据存入时,数据阵列中处于同一等级的条带的XOR校验编码被即时写在校验盘相应的位置,所以彼此不会干扰混乱。读取时,则在调出条带的同时检查校验盘中相应的XOR编码,进行即时的ECC。由于在读写时与RAID 0很相似,所以RAID 3具有很高的数据传输效率。 RAID 3在RAID 2基础上成功地进行结构与运算的简化,曾受到广泛的欢迎,并大量应用。直到更为先进高效的RAID 5出现后,RAID 3才开始慢慢退出市场。下面让我们总结一下RAID 3的特点: 注:主轴同步是指阵列中所有硬盘的主轴马达同步 RAID-4等级 Independent Data disks with shared Parity disk RAID 3 英文定义是Parallel transfer with parity,即并行传输及校验。与之相比,RAID 4则是一种相对独立的形式,这也是它与RAID 3的最大不同。 RAID-4结构图解 与RAID 3相比,我们发现关键之处是把条带改成了“块”。即RAID 4是按数据块为单位存储的,那么数据块应该怎么理解呢?简单的话,一个数据块是一个完整的数据集合,比如一个文件就是一个典型的数据块。当然,对于硬盘的读取,一个数据块并不是一个文件,而是由操作系统所决定的,这就是我们熟悉的簇。RAID 4这样按块存储可以保证块的完整,不受因分条带存储在其他硬盘上而可能产生的不利影响。 不过,在不同硬盘上的同级数据块也都通过XOR进行校验,结果保存在单独的校验盘。所谓同级的概念就是指在每个硬盘中同一柱面同一扇区位置的数据算是同级。在写入时,RAID就是按这个方法把各硬盘上同级数据的校验统一写入校验盘,等读取时再即时进行校验。因此即使是当前硬盘上的数据块损坏,也可以通过XOR校验值和其他硬盘上的同级数据进行恢复。由于RAID 4在写入时要等一个硬盘写完后才能写一下个,并且还要写入校验数据所以写入效率比较差,读取时也是一个硬盘一个硬盘的读,但校验迅速,所以相对速度更快。总之,RAID 4并不为速度而设计。下面我们总结一下RAID 4的特点: RAID-5等级 Independent Data disks with distributed parity blocks 今天我们将介绍在高级RAID系统中最常见的等级RAID 5,由于其出色的性能与数据冗余平衡设计而被广泛采用。与RAID 3、4一样,它也是一种即时校验RAID系统,但设计更为巧妙,而管理也相对复杂。其结构见图: RAID-5结构图解 与RAID 4相对照,我们可以发现它仍采用了数据块的存储方式,但没有独立的校验硬盘,这是因为它在每个独立的数据盘中都开辟了单独的区域用于存储同级数据的XOR校验数据,至于什么是同级数据,在上一期中已经讲过了。在写入时,同级校验数据将即时生成并写入,在读取时,同级校验数据也将被即时读出并检查源数据的正确性。从图中可以发现,RAID 5的硬盘利用率较高,数据吞吐量比较容易得到发挥。 RAID 5是目前最常用的高级RAID等级,是RAID 3、4的理想替代者,许多高档RAID控制器都提供了对RAID 5的支持,并以此做为高档RAID系统的标志。 下面就来总结一下RAID 5的特点: RAID-6等级 Independent Data disks with two independent distributed parity schemes RAID 6等级是在RAID 5基础上,为了进一步加强数据保护而设计的一种RAID方式,实际上是一种扩展RAID 5等级。与RAID 5的不同之处于除了每个硬盘上都有同级数据XOR校验区外,还有一个针对每个数据块的XOR校验区。当然,当前盘数据块的校验数据不可能存在当前盘而是交错存储的,具体形式见图。 RAID-6结构图解 这样一来,等于每个数据块有了两个校验保护屏障,因此RAID 6的数据冗余性能相当好。但是,由于增加了一个校验,所以写入的效率较RAID 5还差,而且控制系统的设计也更为复杂,第二块的校验区也减少了有效存储空间。 由于RAID 6相对于RAID 5在校验方面的微弱优势和在性能与性价比方面的较大劣势,RAID 6等级基本没有实际应用过,只是对更高级的数据的冗余进行的一种技术与思路上的尝试,下面我们就做一个总结: RAID-7等级 Optimized Asynchrony for High I/O Rates as well as High Data Transfer Rates RAID 7等级是至今为止,理论上性能最高的RAID模式,因为它从组建方式上就已经和以往的方式有了重大的不同。基本成形式见图,你会发现在,以往一个硬盘是一个组成阵列的“柱子”,而在RAID 7中,多个硬盘组成一个“柱子”,它们都有各自的通道,也正因为如此,你可以把这个图分解成一个个硬盘连接在主通道上,只是比以前的等级更为细分了。这样做的好处就是在读/写某一区域的数据时,可以迅速定位,而不会因为以往因单个硬盘的限制同一时间只能访问该数据区的一部分,在RAID 7中,以前的单个硬盘相当于分割成多个独立的硬盘,有自己的读写通道,效率也就不言自明了。 RAID-7结构图解 然而,RAID 7的设计与相应的组成规模注定了它是一揽子承包计划。总体上说,RAID 7是一个整体的系统,有自己的操作系统,有自己的处理器,有自己的总线,而不是通过简单的插卡就可以实现的。归纳起来,RAID 7的主要特性如下: · 所有的I/O传输都是异步的,因为它有自己独立的控制器和带有Cache的接口,与系统时钟并不同步 · 所有的读与写的操作都将通过一个带有中心Cache的高速系统总线,我们称之为X-Bus · 专用的校验硬盘可以用于任何通道 · 带有完整功能的即时操作系统内嵌于阵列控制微处理器,这是RAID 7的心脏,它负责各通道的通信以及Cache的管理,这也是它与其他等级最大不同之一 · · · · · · · 连通性:可增至12个主机接口 扩展性:线性容量可增至48个硬盘 开放式系统,运用标准的SCSI硬盘、标准的PC总线、主板以及SIMM内存 高速的,集成Cache的数据总线 在Cache内部完成校验生成工作 多重的附加驱动可以随时热机待命,提高冗余率和灵活性 易管理性:SNMP 可以让管理员远程监视并实现系统控制 按照RAID 7设计者的说法,这种阵列将比其他RAID等级提高150-600%写入时的I/O性能,虽然这引起了不小的争议。 RAID 7已经被SCC公司注册了商标,下面就让我们做一个总结: RAID-10等级 Very High Reliability combined with High Performance 现在我们将进入对组合RAID等级的介绍,所谓组合RAID是指在这个RAID等级中是由多个RAID等级组合而成,RAID 10即是如此。 RAID 10是建立在RAID 0和RAID 1基础上的,具体的组合结构看图: RAID-10结构图解 从中可以看出,RAID 1在这里就是一个冗余的备份阵列,而RAID 0则负责数据的读写阵列。其实,图1只是一种RAID 10方式,更多的情况是从主通路分出两路,做Striping操作,即把数据分割,而这分出来的每一路则再分两路,做Mirroring操作,即互做镜像。这就是RAID 10名字的来历,而不是像RAID 5、3那样的全新等级。 由于利用了RAID 0极高的读写效率和RAID 1较高的数据保护、恢复能力,使RAID 10成为了一种性价比较高的等级,目前几乎所有的RAID控制卡都支持这一等级。但是,RAID 10对存储容量的利用率和RAID 1一样低,只有50%。下面就让我们总结一下它的特点: RAID-53等级 High I/O Rates and Data Transfer Performance 与RAID 10一样,RAID 53也是一种组合RAID 等级,但不要拿RAID 10的观点套用,认为它是RAID 5和RAID 3的组合,事实上,RAID 53应该称为RAID 30或RAID 03,即RAID 3与RAID 0的组合,具体形式见图: RAID-53结构图解 与图1相对比,可以发现,RAID 53中将备份等级由RAID 0变为了RAID 3,也就是说把原来的镜像阵列变成了分割式存储阵列。但它不是对每个RAID 0硬盘都用一个RAID 3系统进行,而是用RAID 3对所有数据进行冗余存储,而且读写与ECC效率比RAID 0要高不少。 值得注意的是,RAID 3在RAID 53的数据传输中占有相当重要的位置。在介绍RAID 3时,曾说过它有很高的读写传输率。因此,在进行大数据量吞吐时,由于RAID 3的传输率高的缘故,RAID 53的性能要比RAID 10好。而且,借助于RAID 0,其I/O带宽并没有降低。不过,从它的配置形式上就可以看出来,它的存储空间利用率要比RAID 10低,为40%。下面就让我们总结一下RAID 53的特点: RAID 1E是RAID 1的增强版本,是由IBM公司提出的一种私有RAID级别,没有成为国际标准。它并不是我们通常所说的RAID 0+1的组合。RAID 1E的工作原理与RAID1基本上是一样的,只是RAID 1E的数据恢复能力更强,但由于RAID 1E写一份数据至少要两次,因此,RAID处理器的负载被增强,从而造成磁盘读写能力的下降。RAID 1E至少需要3块硬盘才能实现。 中文名 RAID-1E 类 属 RAID 1的增强版本 公 司 IBM公司 属 性 一种私有RAID级别 最多支持 8或16个硬盘 RAID 1E RAID 1E和RAID 1的工作原理如图。 RAID1增强整合了镜象和数据条带。该阵列级别的数据条带及数据备份贯穿在逻辑盘中所有的硬盘当中。跟RAID1一样,数据是镜象的,逻辑盘的容量是硬盘总容量的一半。 RAID1E跟RAID1类似,它能提供数据冗余及高的性能,但存储容量减少。然而,RAID1E允许使用更多的物理硬盘。 RAID1E至少需要三个硬盘,取决于固件级别和条带单元大小,最多支持8或16个硬盘。 以下RAID1E的生成图解: 最初是三个物理硬盘 使用三个物理硬盘创建一个逻辑盘 数据是以条带的形式贯穿在硬盘当中,创建块。 注意到标有的是数据,标有的是拷贝的数据条带。 并且注意到镜象条带中的每个块是按一个硬盘为单位来推移的。 在RAID1E中,如果一个物理硬盘坏了,控制器会自动将读写请求转到逻辑盘中剩余的完好的硬盘上。 RAID1E提供如下的优缺点: 优点 缺点 100%数据冗余 存储容量会损失一半 高性能 RAID5E和RAID5EE RAID5E和RAID5EE是被经常提起的支持两个磁盘故障的技术,IBM的存储系统就是广泛采用这种RAID技术来实现双磁盘容错。它到底是如何实现,包含什么样的功能? 图1 RAID5E RAID5E,是在RAID5中每个 Extent (它是在IBM主机中用于创建RAID的单位) 的后面加入了热备用空间 (Hot Space,如图1中Extent尾部的HS0、HSr、HSp等) 。如Extent0故障,那么其他剩余Extents的热备份空间将会被用来重建和重新分配数据,并保证剩下的Extents为RAID5的一部分。从而使得即使一个Extent故障,也能马上有热备用磁盘来替换它,并重建RAID5,从而又带来容错力;从而达到所说的支持两个磁盘故障。 但是,它所能容忍的并不是任何两个磁盘同一时刻故障,可以将它看作是RAID5和在线热备用磁盘(online hot spare drives)的变体。它将I/O操作时的数据分布到所有磁盘,包括热备用磁盘;从而减少了每个磁盘的带宽,带来更高的效率。然而,这也就意味着热备用磁盘不能够被多个阵列共享。 在RAID5E中,没有专用的热备用磁盘,就像RAID5中没有专门的校验磁盘一样,热备用数据块是分布到所有的磁盘中;从而,对于10个磁盘的RAID5E,每个磁盘的80%被用于存储数据,10%用于存储校验,10%用于热备用。 图2 RAID5EE 此外,RAID5EE和RAID5E类似,只是热备用空间被分布在各个Extents中,就像RAID5的检验数据那样分散布置一样;如过某个Extent故障,那么剩余Extent中的热备用空间(如图-2中的HS0, HS1, HS2等),将会被立即用于重建数据,并保证它成为原来RAID5的一部分,从而达到所说的支持两个磁盘故障。 同RAID5E相比,它不是把热备用空间放到每个Extent的尾部,而是分布在数据块其中,它也不允许任何两个磁盘同一时刻故障。不过,RAID5EE在进行热替换时,其寻址可能会更加方便和灵活。 上面介绍的并不是全部的RAID等级,比如RAID 50、RAID 51以及最新的RAID 100。其中,前两者都是组合RAID等级,从括号中的名字上就可以看出组合的方式。 一些常用名词解释: 硬盘镜像:硬盘镜像最简单的形式是,一个主机控制器带二个互为镜像的硬盘。数据同时写入二个硬盘,二个硬盘上的数据完全相同,因此一个硬盘故障时,另一个硬盘可提供数据。 硬盘数据跨盘:利用这种技术,几个硬盘看上去像是一个大硬盘;这个虚拟盘可以把数据跨盘存储在不同的物理盘上,用户不需关心哪个盘上存有他需要的数据。 硬盘数据分段:数据分散存储在几个盘上。数据的第一段放在盘0,第2段放在盘1,直至达到硬盘链中的最后一个盘,然后下一个逻辑段将放在硬盘0,再下一个逻辑段放在盘1,如此循环直至完成写操作。 双控:这里指的是用二个控制器来驱动一个硬盘子系统。一个控制器发生故障,另一个控制器马上控制硬盘操作。此外,如果编写恰当的控制器软件,可实现不同的硬盘驱动器同时工作。 容错:具有容错功能的机器有抗故障的能力。例如RAID 1镜像系统是容错的,镜像盘中的一个出故障,硬盘子系统仍能正常工作。 主机控制器:这里指的是使主机和外设进行数据交换的控制部件。 热修复:指用一个硬盘热备份来替换发生的故障的硬盘。要注意故障盘并不是真正地被物理替换了。用作热备份的盘被加载上故障盘原来的数据,然后系统恢复工作。 热补:具有硬盘热备份,可随时替换故障盘的系统。 热备份:与CPU系统电连接的硬盘,它能替换下系统中的故障盘。与冷备份的区别是,冷备份盘平时与机器不相连接,硬盘故障时才换下故障盘。 系统重建:一个硬盘发生故障后,从其它正确的硬盘数据和奇偶信息恢复故障盘数据的过程。 恢复时间:为故障盘重建数据所需要的时间。单个大容量硬盘。 传输速率:指在不同条件下存取数据的速度。

    注意事项

    本文(RAID的种类优缺点.docx)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开