电工学-电子技术(-第七版-秦增煌)课件-第3章.ppt
第3章 电路的暂态分析,3.2 储能元件和换路定则,3.3 RC电路的响应,3.4 一阶线性电路暂态分析的三要素法,3.6 RL电路的响应,3.5 微分电路与积分电路,3.1 电阻元件、电感元件与电容元件,教学要求:,稳定状态:在指定条件下电路中电压、电流已达到稳定值。,暂态过程:电路从一种稳态变化到另一种稳态的过渡过程。,1.理解电路的暂态和稳态、零输入响应、零状 态响应、全响应的概念,以及时间常数的物 理意义。2.掌握换路定则及初始值的求法。3.掌握一阶线性电路分析的三要素法。,第3章 电路的暂态分析,电路暂态分析的内容,1.利用电路暂态过程产生特定波形的电信号 如锯齿波、三角波、尖脉冲等,应用于电子电路。,研究暂态过程的实际意义,2.控制、预防可能产生的危害 暂态过程开始的瞬间可能产生过电压、过电流使 电气设备或元件损坏。,(1)暂态过程中电压、电流随时间变化的规律。,直流电路、交流电路都存在暂态过程,我们讲课的重点是直流电路的暂态过程。,(2)影响暂态过程快慢的电路的时间常数。,产生过渡过程的电路及原因?,电阻电路,电阻是耗能元件,其上电流随电压比例变化,不存在过渡过程。,电容为储能元件,它储存的能量为电场能量,其大小为:,电容电路,储能元件,因为能量的存储和释放需要一个过程,所以有电容的电路存在过渡过程。,储能元件,电感电路,电感为储能元件,它储存的能量为磁场能量,其大小为:,因为能量的存储和释放需要一个过程,所以有电感的电路存在过渡过程。,有储能元件(L、C)的电路在电路状态发生变化时(如:电路接入电源、从电源断开、电路参数改变等)存在过渡过程;没有储能作用的电阻(R)电路,不存在过渡过程。,电路中的 u、i在过渡过程期间,从“旧稳态”进入“新稳态”,此时u、i 都处于暂时的不稳定状态,所以过渡过程又称为电路的暂态过程。,自然界物体所具有的能量不能突变,能量的积累或 释放需要一定的时间。所以,*,研究暂态电路的方法:,一般可以说,数学分析和实验分析是分析暂态电路的两种方法。本章内容介绍最基本的数学分析方法,其理论依据是欧姆定律及克希荷夫定律。,实验分析方法,将在实验课程中应用示波器等仪器观测暂态过程中各量随时间变化的规律。,研究暂态过程,是要认识和掌握这种现象的规律。,本章主要分析RC及RL一阶线性电路的暂态过程,电路的激励仅限于阶跃电压或矩形脉冲电压。,重点讨论的问题是:(1)暂态过程随时间变化的规律;(2)影响暂态过程快慢程度的时间常数。,3.1.1 电阻元件(resistance)。,描述消耗电能的性质,根据欧姆定律:,即电阻元件上的电压与通过的电流成线性关系,线性电阻,金属导体的电阻与导体的尺寸及导体材料的导电性能有关,表达式为:,表明电能全部消耗在电阻上,转换为热能散发。,电阻的能量,3.1 电阻元件、电感元件与电容元件,描述线圈通有电流时产生磁场、储存磁场能量的性质。,1.物理意义,3.1.2 电感元件(inductance),线圈的电感与线圈的尺寸、匝数以及附近的介质的导磁性能等有关。,自感电动势:,2.自感电动势方向的判定,(1)自感电动势的参考方向,规定:自感电动势的参考方向与电流参考方向相同,或与磁通的参考方向符合右手螺旋定则。,(2)自感电动势瞬时极性的判别,eL与参考方向相反,eL具有阻碍电流变化的性质,eL与参考方向相同,(3)电感元件储能,根据基尔霍夫定律可得:,将上式两边同乘上 i,并积分,则得:,即电感将电能转换为磁场能储存在线圈中,当电流增大时,磁场能增大,电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还能量。,磁场能,例1:有一电感元件,L=0.2H,电流 i 如图所示,求电感元件中产生的自感电动势eL和两端电压u的波形。,则:,由图可见:,(1)电流正值增大时,eL为负,电流正值减小时,eL为正;,(2)电流的变化率di/dt大,则eL大;反映电感阻碍电流变化的性质。,(3)电感两端电压u和通过它的电流i的波形是不一样的。,例2:在上例中,试计算在电流增大的过程中电感元件从电源吸取的能量和在电流减小的过程中电感元件向电源放出的能量。,解:在电流增大的过程中电感元件从电源吸取的能量和在电流减小的过程中电感元件向电源放出的能量是相等的。,3.1.3 电容元件(capacitance),描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质。,电容:,电容器的电容与极板的尺寸及其间介质的介电常数等关。,当电压u变化时,在电路中产生电流:,电容元件储能,将上式两边同乘上 u,并积分,则得:,即电容将电能转换为电场能储存在电容中,当电压增大时,电场能增大,电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还能量。,电场能,根据:,3.2 储能元件和换路定则,1.电路中产生暂态过程的原因,电流 i 随电压 u 比例变化。,合S后:,所以电阻电路不存在暂态过程(R耗能元件)。,图(a):合S前:,例:,产生暂态过程的必要条件:,L储能:,换路:电路状态的改变。如:,电路接通、切断、短路、电压改变或参数改变,C 储能:,产生暂态过程的原因:由于物体所具有的能量不能跃变而造成,在换路瞬间储能元件的能量也不能跃变,(1)电路中含有储能元件(内因)(2)电路发生换路(外因),电容电路:,注:换路定则仅用于换路瞬间来确定暂态过程中 uC、iL初始值。,2.换路定则,电感电路:,3.初始值的确定,求解要点:,(2)其它电量初始值的求法。,初始值:电路中各 u、i 在 t=0+时的数值。,(1)uC(0+)、iL(0+)的求法。,1)先由t=0-的电路求出 uC(0)、iL(0);,2)根据换路定律求出 uC(0+)、iL(0+)。,1)由t=0+的电路求其它电量的初始值;,2)在 t=0+时的电压方程中 uC=uC(0+)、t=0+时的电流方程中 iL=iL(0+)。,暂态过程初始值的确定,例1,由已知条件知,根据换路定则得:,已知:换路前电路处稳态,C、L 均未储能。试求:电路中各电压和电流的初始值。,暂态过程初始值的确定,例1:,iC、uL 产生突变,(2)由t=0+电路,求其余各电流、电压的初始值,例2:,换路前电路处于稳态。试求图示电路中各个电压和电流的初始值。,换路前电路已处于稳态:电容元件视为开路;电感元件视为短路。,由t=0-电路可求得:,4,2,+,_,R,R2,R1,+,+,4,i1,4,iC,_,uC,_,uL,iL,R3,L,C,t=0-等效电路,例2:,换路前电路处于稳态。试求图示电路中各个电压和电流的初始值。,解:,由换路定则:,例2:,换路前电路处稳态。试求图示电路中各个电压和电流的初始值。,解:(2)由t=0+电路求 iC(0+)、uL(0+),uc(0+),由图可列出,带入数据,iL(0+),例2:,换路前电路处稳态。试求图示电路中各个电压和电流的初始值。,解:解之得,并可求出,计算结果:,电量,结论,1.换路瞬间,uC、iL 不能跃变,但其它电量均可以跃 变。,3.换路前,若uC(0-)0,换路瞬间(t=0+等效电路中),电容元件可用一理想电压源替代,其电压为uc(0+);换路前,若iL(0-)0,在t=0+等效电路中,电感元件 可用一理想电流源替代,其电流为iL(0+)。,2.换路前,若储能元件没有储能,换路瞬间(t=0+的等 效电路中),可视电容元件短路,电感元件开路。,3.3 RC电路的响应,一阶电路暂态过程的求解方法,1.经典法:根据激励(电源电压或电流),通过求解电路的微分方程得出电路的响应(电压和电流)。,2.三要素法,仅含一个储能元件或可等效为一个储能元件的线性电路,且由一阶微分方程描述,称为一阶线性电路。,一阶电路,求解方法,代入上式得,换路前电路已处稳态,(1)列 KVL方程,1.电容电压 uC 的变化规律(t 0),零输入响应:无电源激励,输入信号为零,仅由电容元件的初始储能所产生的电路的响应。,图示电路,实质:RC电路的放电过程,3.3.1 RC电路的零输入响应,(2)解方程:,特征方程,由初始值确定积分常数 A,齐次微分方程的通解:,电容电压 uC 从初始值按指数规律衰减,衰减的快慢由RC 决定。,(3)电容电压 uC 的变化规律,电阻电压:,放电电流,电容电压,2.电流及电阻电压的变化规律,3.、变化曲线,4.时间常数,(2)物理意义,令:,单位:S,(1)量纲,当 时,时间常数 决定电路暂态过程变化的快慢,当 t=5 时,过渡过程基本结束,uC达到稳态值。,(3)暂态时间,理论上认为、电路达稳态,工程上认为、电容放电基本结束。,随时间而衰减,3.3.2 RC电路的零状态响应,零状态响应:储能元件的初始能量为零,仅由电源激励所产生的电路的响应。,实质:RC电路的充电过程,分析:在t=0时,合上开关s,此时,电路实为输入一 个阶跃电压u,如图。与恒定电压不同,其,电压u表达式,一阶线性常系数非齐次微分方程,方程的通解=方程的特解+对应齐次方程的通解,1.uC的变化规律,(1)列 KVL方程,3.3.2 RC电路的零状态响应,(2)解方程,求特解:,方程的通解:,求对应齐次微分方程的通解,微分方程的通解为,确定积分常数A,根据换路定则在 t=0+时,,(3)电容电压 uC 的变化规律,暂态分量,稳态分量,电路达到稳定状态时的电压,仅存在于暂态过程中,3.、变化曲线,当 t=时,表示电容电压 uC 从初始值上升到 稳态值的63.2%时所需的时间。,2.电流 iC 的变化规律,4.时间常数 的物理意义,为什么在 t=0时电流最大?,3.3.3 RC电路的全响应,1.uC 的变化规律,全响应:电源激励、储能元件的初始能量均不为零时,电路中的响应。,根据叠加定理 全响应=零输入响应+零状态响应,稳态分量,零输入响应,零状态响应,暂态分量,结论2:全响应=稳态分量+暂态分量,全响应,结论1:全响应=零输入响应+零状态响应,稳态值,初始值,当 t=5 时,暂态基本结束,uC 达到稳态值。,稳态解,初始值,3.4 一阶线性电路暂态分析的三要素法,仅含一个储能元件或可等效为一个储能元件的线性电路,且由一阶微分方程描述,称为一阶线性电路。,据经典法推导结果,全响应,uC(0-)=Uo,s,R,U,+,_,C,+,_,i,uc,:代表一阶电路中任一电压、电流函数,式中,在直流电源激励的情况下,一阶线性电路微分方程解的通用表达式:,利用求三要素的方法求解暂态过程,称为三要素法。一阶电路都可以应用三要素法求解,在求得、和 的基础上,可直接写出电路的响应(电压或电流)。,电路响应的变化曲线,三要素法求解暂态过程的要点,(1)求初始值、稳态值、时间常数;,(3)画出暂态电路电压、电流随时间变化的曲线。,(2)将求得的三要素结果代入暂态过程通用表达式;,求换路后电路中的电压和电流,其中电容 C 视为开路,电感L视为短路,即求解直流电阻性电路中的电压和电流。,(1)稳态值 的计算,响应中“三要素”的确定,1)由t=0-电路求,在换路瞬间 t=(0+)的等效电路中,注意:,(2)初始值 的计算,1)对于简单的一阶电路,R0=R;,2)对于较复杂的一阶电路,R0为换路后的电路除去电源和储能元件后,在储能元件两端所求得的无源二端网络的等效电阻。,(3)时间常数 的计算,对于一阶RC电路,对于一阶RL电路,注意:,R0的计算类似于应用戴维宁定理解题时计算电路等效电阻的方法。即从储能元件两端看进去的等效电阻,如图所示。,例1:,电路如图,t=0时合上开关S,合S前电路已处于稳态。试求电容电压 和电流、。,(1)确定初始值,由t=0-电路可求得,由换路定则,应用举例,(2)确定稳态值,由换路后电路求稳态值,(3)由换路后电路求 时间常数,uC 的变化曲线如图,用三要素法求,例2:,由t=0-时电路,电路如图,开关S闭合前电路已处于稳态。t=0时S闭合,试求:t 0时电容电压uC和电流iC、i1和i2。,求初始值,求时间常数,由右图电路可求得,求稳态值,(、关联),3.5 微分电路与积分电路,3.5.1 微分电路,微分电路与积分电路是矩形脉冲激励下的RC电路。若选取不同的时间常数,可构成输出电压波形与输入电压波形之间的特定(微分或积分)的关系。,1.电路,条件,(2)输出电压从电阻R端取出,2.分析,由KVL定律,3.波形,3.5.2 积分电路,条件,(2)从电容器两端输出。,由图:,1.电路,输出电压与输入电压近似成积分关系。,2.分析,3.波形,t2,U,t1,u1,3.6 RL电路的响应,3.6.1 RL 电路的零输入响应,1.RL 短接,(1)的变化规律,(三要素公式),1)确定初始值,2)确定稳态值,3)确定电路的时间常数,(2)变化曲线,2.RL直接从直流电源断开,(1)可能产生的现象,1)刀闸处产生电弧,2)电压表瞬间过电压,(2)解决措施,2)接续流二极管 VD,1)接放电电阻,图示电路中,RL是发电机的励磁绕组,其电感较大。Rf是调节励磁电流用的。当将电源开关断开时,为了不至由于励磁线圈所储的磁能消失过快而烧坏开关触头,往往用一个泄放电阻R 与线圈联接。开关接通R同时将电源断开。经过一段时间后,再将开关扳到 3的位置,此时电路完全断开。,例:,(1)R=1000,试求开关S由1合向2瞬间线圈两端的电压uRL。,电路稳态时S由1合向2。,(2)在(1)中,若使U不超过220V,则泄放电阻R应选多大?,解:,(3)根据(2)中所选用的电阻R,试求开关接通R后经过多长时间,线圈才能将所储的磁能放出95%?(4)写出(3)中uRL随时间变化的表示式。,换路前,线圈中的电流为,(1)开关接通R瞬间线圈两端的电压为,(2)如果不使uRL(0)超过220V,则,即,(3)求当磁能已放出95%时的电流,求所经过的时间,3.6.2 RL电路的零状态响应,1.变化规律,三要素法,2.、变化曲线,3.6.3 RL电路的全响应,12V,+-,R1,L,S,U,6,R2,3,4,R3,t=时等效电路,+,-,用三要素法求,2.变化规律,变化曲线,变化曲线,用三要素法求解,解:,已知:S 在t=0时闭合,换路前电路处于稳态。求:电感电流,例:,由t=0等效电路可求得,(1)求uL(0+),iL(0+),由t=0+等效电路可求得,(2)求稳态值,由t=等效电路可求得,(3)求时间常数,稳态值,iL,uL变化曲线,