高数同济第五答案第2章.docx
高数同济第五答案第2章习题2-1 (1)y=x4; (2)y=3x2; (3)y=x1.6; (4)y=1; x (5)y=12; x (6)y=x35x; (7)y=x2x2x53; 2321 解 (1)y¢=(x 4)¢=4x4-1=4x3 . (2)y¢=(3x2-122-)¢=(x)¢=x3=x333. 3 (3)y¢=(x 1.6)¢=1.6x 1.6-1=1.6x 0.6. (4)y¢=(1x)¢=(x-12)¢=1-11-x2=-x2221. (5)y¢=(12)¢=(x-2)¢=-2x-3. x (6)y¢=5(x3x)¢=16(x516)¢=x516)¢=16-1516=x55115. (7)y¢=(x2x2x53)¢=(x16-11-6x=x661. 8. 已知物体的运动规律为s=t 3(m), 求这物体在t=2秒(s)时的速度. 解v=(s)¢=3t2, v|t=2=12(米/秒). 9. 如果f(x)为偶函数, 且f(0)存在, 证明f(0)=0. 证明 当f(x)为偶函数时, f(-x)=f(x), 所以 f¢(0)=limf(x)-f(0)x-0x®0=limf(-x)-f(0)x-0x®0=-limf(-x)-f(0)-x-0-x®0=-f¢(0), 从而有2f ¢(0)=0, 即f ¢(0)=0. 10. 求曲线y=sin x在具有下列横坐标的各点处切线的斜率: x=2p, x=p. 3 解 因为y¢=cos x, 所以斜率分别为 k1=cos2p=-1, k2=cosp3232=-1. p1 11. 求曲线y=cos x上点(, )处的切线方程和法线方程式. 解y¢=-sin x, y¢x=p3=-sinp3=-32, p1故在点(, )处, 切线方程为y-1=-3(x-p), 32223法线方程为y-1=-2(x-p). 233 12. 求曲线y=ex在点(0,1)处的切线方程. 解y¢=ex, y¢|x=0=1, 故在(0, 1)处的切线方程为 y-1=1×(x-0), 即y=x+1. 13. 在抛物线y=x2上取横坐标为x1=1及x2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线? 解 y¢=2x, 割线斜率为k=y(3)-y(1)3-1=9-1=42. 令2x=4, 得x=2. 因此抛物线y=x2上点(2, 4)处的切线平行于这条割线. 14. 讨论下列函数在x=0处的连续性与可导性: (1)y=|sin x|; (2)1ìïx2sin x¹0y=íxï0 x=0î . 解 (1)因为 y(0)=0, limy=lim|sinx|=lim(-sinx)=0, limy=lim|sinx|=limsinx=0, x®-0x®-0x®-0x®+0x®+0x®+0所以函数在x=0处连续. 又因为 ¢(0)=lim y-y(x)-y(0)x-0y(x)-y(0)x-0x®-0=lim=lim|sinx|-|sin0|x-0|sinx|-|sin0|x-0x®-0=lim=lim-sinx=-1, x®-0x¢(0)=lim y+x®+0x®+0sinx=1, x®+0x而y¢-(0)¹y¢+(0), 所以函数在x=0处不可导. 解 因为lim 又因为 x®0y(x)=limx2sinx®01=0, 又y(0)=0, 所以函数在在x=0处连续. x1x2sin-0y(x)-y(0)1x=lim=limxsin=0, limx®0x®0x®0x-0xx所以函数在点x=0处可导, 且y¢(0)=0. 15. 设函数f(x)=ìí 解 因为 limf(x)=limx2=1, limf(x)=lim(ax+b)=a+b, f(1)=a+b, x®1-0x®1-0x®1+0x®1+0 x2 x£1为了使函数f(x)在îax+b x>1x=1处连续且可导, a, b应取什么值? 所以要使函数在x=1处连续, 必须a+b=1 . 又因为当a+b=1时 a(x-1)+a+b-1a(x-1)x2-1ax+b-1=2, f+¢(1)=lim=lim=lim=a, f-¢(1)=limx®1-0x-1x®1+0x-1x®1+0x-1x®1+0x-1所以要使函数在x=1处可导, 必须a=2, 此时b=-1. 16. 已知 解 因为 ì x2 x³0f(x)=í求î-x x<0f(x)-f(0)xf+¢(0)及f-¢(0), 又f ¢(0)是否存在? f-¢(0)=limx®-0=limf(x)-f(0)-x-0x2-0=-1, f+¢(0)=lim=lim=0, x®-0x®+0x®+0xxx而f-¢(0)¹f+¢(0), 所以f ¢(0)不存在. 17. 已知f(x)=ìísinx x<0, 求î x x³0f ¢(x) . 解 当x<0时, f(x)=sin x , f ¢(x)=cos x ; 当x>0时, f(x)=x, f ¢(x)=1; 因为 f-¢(0)=limf(x)-f(0)xf(x)-f(0)x-0 f+¢(0)=lim=lim=1, 所以f ¢(0)=1, 从而 x®+0x®+0xxcosx x<0 f ¢(x)=ì. íî1 x³0x®-0=limsinx-0=1, x®-0x 18. 证明: 双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2 . 解 由xy=a2得y=2a2x, k=y¢=-a2x2. 设(x0, y0)为曲线上任一点, 则过该点的切线方程为 y-y0=-a2(x-x0). x0 令y=0, 并注意x0 y0=a, 解得x=22y0x0a22+x0=2x0, 为切线在x轴上的距. 令x=0, 并注意x0 y0=a2, 解得y=a+y0=2y0, 为切线在y轴上的距. x0 此切线与二坐标轴构成的三角形的面积为 S=1|2x0|2y0|=2|x0y0|=2a2. 2习题 2-2 1. 推导余切函数及余割函数的导数公式: (cot x)¢=-csc2x ; (csc x)¢= -csc xcot x . cosx×cosxsin2x+cos2x 解 (cotx)¢=(cosx)¢=-sinx×sinx-=-=-22sinxsinxsinx1=-csc2x. 2sinx (cscx)¢=(1)¢=-cos2x=-cscx×cotx. sinxsinx 2. 求下列函数的导数: (1)y=45+74-2+12; (2) y=5x-2+3ex ; (3) y=2tan x +sec x-1; (4) y=sin x×cos x ; (5) y=x2ln x ; (6) y=3excos x ; x3xxx (7)y=lnx; xx (8)y=e2+ln3; (9) y=xln x cos x ; (10)s=1+sint; 1+costx2x 解 (1)y¢=(45+74-2+12)¢=(4x-5+7x-4-2x-1+12)¢ xx282 =-20x-6-28x-5+2x-2=-20. -+652xxx (2) y¢=(5x-2+3e)¢=15x-2ln2+3e. (3) y¢=(2tan x +sec x-1)¢=2sec2x+sec x×tan x =sec x(2sec x+tan x). (4) y¢=(sin x×cos x)¢=(sin x)¢×cos x+sin x×(cos x)¢=cos x×cos x+sin x×(-sin x)= cos 2x . (5) y¢=(x2ln x)¢=2x×ln x+x2×1=x(2ln x+1) . (6) y¢=(3ecos x)¢=3e×cos x+3ex×(-sin x)=3ex(cos x-sin x). (7) (8)1×x-lnxlnx1-lnxxy¢=¢=xx2x2xx3xx2x xx. . y¢=(exex×x2-ex×2xex(x-2)¢+ln3)=x2x4x3 (9) y¢=(x2ln x cos x)¢=2x×ln x cos x+x2×1×cos x+x2 ln x×(-sin x) 2x ln x cos x+x cos x-x ln x sin x . (10)s¢=(cost(1+cost)-(1+sint)(-sint)1+sint+cost1+sint)¢=1+cost(1+cost)2(1+cost)22x. 3. 求下列函数在给定点处的导数: (1) y=sin x-cos x , 求y¢x=p和y¢x=p. 64 (2)r=qsinq+1cosq,求2drdqq=p4. 2 (3)f(x)=3+x, 求f ¢(0)和f ¢(2) . 5-x5 解 (1)y¢=cos x+sin x, y¢ y¢ (2)drdqx=p6=cos=cosp6+sin+sinp6=31+=223+12, x=p4p4p422+=222. , =sinq+qcosq-11sinq=sinq+qcosq22drdqq=p4=1ppp12p22psin+cos=×+×=(1+)2444224242. (3)f¢(x)=32+x(5-x)25, f¢(0)=3, f¢(2)=17. 25152 4. 以初速v0竖直上抛的物体, 其上升高度s与时间t的关系是s=v0t-1gt2. 求: (1)该物体的速度v(t); (2)该物体达到最高点的时刻. 解 (1)v(t)=s¢(t)=v0-gt. (2)令v(t)=0, 即v0-gt=0, 得t=v0g, 这就是物体达到最高点的时刻. 5. 求曲线y=2sin x+x2上横坐标为x=0的点处的切线方程和法线方程. 解 因为y¢=2cos x+2x, y¢|x=0=2, 又当x=0时, y=0, 所以所求的切线方程为 y=2x, 所求的法线方程为 1 y=-x, 即x+2y=0. 2 6. 求下列函数的导数: (1) y=(2x+5)4 (2) y=cos(4-3x); (3)y=e-3x; 2 (4) y=ln(1+x2); (5) y=sin2x ; (6)y=a2-x2; (7) y=tan(x2); (8) y=arctan(ex); (9) y=(arcsin x)2; (10) y=lncos x . 解 (1) y¢=4(2x+5)4-1×(2x+5)¢=4(2x+5)3×2=8(2x+5)3. (2) y¢=-sin(4-3x)×(4-3x)¢=-sin(4-3x)×(-3)=3sin(4-3x). (3)y¢=e-3x×(-3x2)¢=e-3x×(-6x)=-6xe-3x. 222 (4)y¢=12×(1+x2)¢=12×2x=2x2. 1+x1+x1+x (5) y¢=2sin x ×(sin x)¢=2sin x×cos x=sin 2x . (6)y¢=(a2-12x)2¢-1-11=(a2-x2)2×(a2-x2)¢=(a2-x2)2×(-2x)=-2211xa2-x2. (7) y¢= sec2(x2)×(x2)¢=2x sec2(x2). (8)y¢=1ex×(ex)¢=1+(ex)21+e2x. (9) y¢=2arcsinx×(arcsinx)¢=2arcsinx. 1-x2 (10)y¢=1×(cosx)¢=1(-sinx)=-tanx. cosxcosx 7. 求下列函数的导数: (1) y=arcsin(1-2x); (2)y= (3)y=e11-x2-x2; ; cos3x1x (4)y=arccos; (5)y=1-lnx; 1+lnx (6)y=sin2xx; x (7)y=arcsin; (8)y=ln(x+a2+x2); (9) y=ln(sec x+tan x); (10) y=ln(csc x-cot x). 解 (1) y¢=11-(1-2x)2-12×(1-2x)¢=-21-(1-2x)2=-1x-x2. (2)y¢=(1-x2x2)¢-1-311x=-(1-x2)2×(1-x2)¢=-(1-x2)2×(-2x)=22(1-x2)1-x21. (3)y¢=(e )¢cos3x+ex-x2(cos3x)¢=ex-x2-x(-)¢cos3x+e2(-sin3x)(3x)¢ 2xx-1-1-=-e2cos3x-3e2sin3x=-e2(cos3x+6sin3x). 22 (4)y¢=-111-2x1¢=-x111-2x(-|x|1)=x2x2x2-1. - (5)y¢=11(1+lnx)-(1-lnx)2xx=-(1+lnx)2x(1+lnx)2. (6)y¢=cos2x×2×x2-sin2x×1=2xcos2x2-sin2x. xx×x)2 (7)y¢= (8)y¢= =11-(x)2×(x)¢=11-(12x=12x-x2. 12a2+x2(a2+x2)¢1x+a21x+a2+x2+x2×(x+a2+x2)¢=12a2+x21x+a2+x2×1+×1+(2x)=1a2+x2. (9) y¢=1secxtanx+sec2x×(secx+tanx)¢=secx. secx+tanxsecx+tanx (10) y¢=1-cscxcotx+csc2x×(cscx-cotx)¢=cscx. cscx-cotxcscx-cotx 8. 求下列函数的导数: x2); (1)y=(arcsin2 (2)y=lntanx; 2 (3)y=1+ln2x; (4)y=earctanx; (5)y=sinnxcos nx ; (6)y=arctanx+1; x-1 (7)y=arcsinxarccosx; (8) y=lnln(ln x) ; (9)y1+x-1-x; 1+x+1-x (10)y=arcsin1-x1+x. 1x1-22x×¢ 2 解 (1)y¢=2(arcsinx)×(arcsinx)¢=2(arcsinx)×222 =2(arcsinx)×21x1-22×1=22arcsin4-x2x2. (2)y¢=1xtan2×(tanx)¢=21xtan2×sec2xx×¢=221xtan2×sec2x1×=cscx22. (3)y¢=1+ln2x= =121+ln2xx121+lnx×2lnx×2×(1+ln2x)¢=121+lnx2×2lnx×(lnx)¢ 1lnx=xx1+ln2xx)¢=earctanx. 1×(x)¢ (4)y¢=earctan =earctan×(arctan×1+(xx)2x×11+(x)2×12x=earctan2x(1+x). (5) y¢=n sinn-1x×(sin x)¢×cos nx+sinnx×(-sin nx)×(nx)¢ =n sinn-1x×cos x ×cos nx+sinnx×(-sin nx)×n =n sinn-1x×(cos x×cos nx-sin x×sin nx)= n sinn-1xcos(n+1)x . (6)y¢=(x-1)-(x+1)1x+111×¢=×=-x+12x-1x+12(x-1)21+x21+1+x-1x-1. 1 (7)y¢= = (8)y¢=1-x2arccosx+11-x2(arccosx)2arcsinx=11-x2×arccosx+arcsinx(arccosx)2 p21-x2(arccosx)2. . 1111111×ln(lnx)¢=××(lnx)¢=××=ln(lnx)ln(lnx)lnxln(lnx)lnxxxlnx×ln(lnx) (9)y¢=21+x = (10)y¢=1-(1+121-x)(1+x+1-x)-(1+x-1-x)(1+x+1-x)2121+x-121-x) 11-x2+1-x211-x1+x×(. 11-1-x1+x×-(1+x)-(1-x)(1+x)2=-1(1+x)2x(1-x)1-x)¢=1+x. 9. 设函数f(x)和g(x)可导, 且f 2(x)+g2(x)¹0, 试求函数y=f2(x)+g2(x)的导数. 解 y¢= =12f2(x)+g2(x)×f2(x)+g2(x)¢=12f2(x)+g2(x)×2f(x)f¢(x)+2g(x)g¢(x) f(x)f¢(x)+g(x)g¢(x)f2(x)+g2(x). 10. 设f(x)可导, 求下列函数y的导数dydx: (1) y=f(x2); (2) y=f(sin2x)+f(cos2 x). 解 (1) y¢=f ¢(x2)×(x2)¢= f ¢(x2)×2x=2x×f ¢(x2). (2) y¢=f ¢(sin2x)×(sin2x)¢+f ¢(cos2x)×(cos2x)¢ = f ¢(sin2x)×2sin x×cos x+f ¢(cos2x)×2cosx×(-sin x) =sin 2xf ¢(sin2x)- f ¢(cos2x). 11. 求下列函数的导数: (1) y=ch(sh x ); (2) y=sh x×ech x; (3) y=th(ln x); (4) y=sh3x +ch2x ; (5) y=th(1-x2); (6) y=arch(x2+1); (7) y=arch(e2x); (8) y=arctan(th x); (9)y=lnchx+ (10)y=ch2(1; 2ch2xx-1) x+1 解 (1) y¢=sh(sh x)×(sh x)¢=sh(sh x)×ch x . (2) y¢=ch x×ech x+sh x×ech x×sh x=ech x(ch x+sh2x) . (3)y¢=11×(lnx)¢=ch2(lnx)x×ch2(lnx). (4) y¢=3sh2x×ch x+2ch x×sh x =sh x×ch x×(3sh x+2) . (5)y¢= (6)y¢= (7)y¢= (8)y¢= =1-2x×(1-x2)=ch2(1-x2)ch2(1-x2)11+(x2+1)×(x2+1)¢=2xx4+2x2+2. . 1(e2x)2-1×(e2x)¢=2e2xe4x-1. 12(1+sh2xchx×1ch2x111×(th x)¢=×=221+(thx)1+thxch2x)1ch2x+sh2xch x=1. 1+2sh2x1sh x1×(ch2x)¢=-×2ch x×shx 2ch4xch x2ch4xchxchxchx (9)y¢=1×(ch x)¢-ch xchx2sh x×(ch2x-1)sh3x=th3x. =sh x-sh3x=sh x×ch3x-shx=33 (10)y¢=2ch(x-1)×ch(x-1x+1x+1)¢=2ch(x-1)×sh(x-1)×(x-1)¢x+1x+1x+1 =sh(2×x-1)×x+1(x+1)-(x-1)(x+1)2=2x-1sh(2×(x+1)2x+1). 12. 求下列函数的导数: (1) y=e-x(x2-2x+3); (2) y=sin2x×sin(x2); 2 (3)y=(arctanx); 2 (4)y=lnnx; xt (5)y=et-e-t; e+e-t (6)y=lncos1; x (7)y=e-sin21x; (8)y=x+x; (9) y=xarcsinx+4-x2; 2 (10)y=arcsin2t. 1+t2 解 (1) y¢=-e-x(x2-2x+3)+e-x(2x-2)=e-x(-x2+4x-5). (2) y¢=2sin x×cos x×sin(x2)+sin2x×cos(x2)×2x=sin2x×sin(x2)+2x×sin2x×cos(x2). (3)y¢=2arctanx×114x×=arctan2x2x2+4221+4. (4)1n×x-lnx×nxn-11-nlnxxy¢=x2nxn+1(et+e-t)2. =4e2t(e2t+1)2 (5)y¢=(et+e-t)(et+e-t)-(et-e-t)(et-e-t). x (6)y¢=sec1×(cos1)¢=sec1×(-sin1)×(-12)=12tan1. xxxxxx (7)y¢=e-sin21x×(-sin2-sin2111112-sin2xx×(-2sin)¢=e)×cos×(-)=×sin×exxxx2x2x11. (8)y¢=12x+x×(x+x)¢=12x+x×(1+12x)=2x+14x×x+x. (9)y¢=arcsinx+x×212t21-1+t21x21-4×(×11x+×(-2x)=arcsin224-x2212t21-1+t2. (10)y¢=2t)¢=1+t2×2×(1+t2)-2t×(2t)(1+t2)2 =习题 2-3 1+t2(1-t2)2×2(1-t2)(1+t2)2=2(1-t2)|1-t2|(1+t2). 1. 求函数的二阶导数: (1) y=2x2+ln x ; (2) y=e2x-1 ; (3) y=x cos x ; (4) y=e-t sin t ; (5)y=a2-x2; (6) y=ln(1-x2) (7) y=tan x ; (8)y=31 (9) y=(1+x2)arctan x ; x (10)y=e; x+1; x (11)y=xex; (12)y=ln(x+1+x2). 解 (1)y¢=4x+1x1x22, y¢¢=4-. (2) y¢=e2x-1 ×2=2e2x-1, y¢¢=2e2x-1 ×2=4e2x-1. (3) y=x cos x ; y¢=cos x-x sin x, y¢¢=-sin x-sin x-x cos x=-2sin x-x cos x . (4) y¢=-e-tsin t+e-tcos t=e-t(cos x-sin x) y¢¢=-e-t(cos x-sin x)+e-t(-sin x-cos x)=-2e-tcos t . (5)y¢=12a2-x2×(a2-x2)¢=-xa2-x2=-a2(a2-x2)a2-x2xa2-x2, a2-x2-x× y¢¢=-a2-x2. (6) y¢=12×(1-x2)¢=-2x2, 1-x1-x y¢¢=-2(1-x2)-2x×(-2x)(1-x2)2=-2(1+x2)(1-x2)2. (7) y¢=sec2 x, y¢¢=2sec x×(sec x)¢=2sec x×sec x×tan x=2sec2x×tan x . (8)y¢=-(x3+1)¢(x3+1)2=-3x2(x3+1)2(x3+1)4, =6x(2x3-1)(x3+1)3 y¢¢=-6x×(x3+1)2-3x2×2(x3+1)×3x. (9)y¢=2xarctanx+(1+x2)×12=2xarctanx+1, 1+x y¢¢=2arctanx+2x2. 1+x (10)y¢=ex×x-ex×1ex(x-1)=x2x2, y¢¢=ex(x-1)+ex×x2-ex(x-1)×2xx422222=ex(x2-2x+2)x32. (11)y¢=ex+x×ex×(2x)=ex(1+2x2), y¢¢=ex×2x×(1+2x2)+ex×4x=2xex(3+2x2). (12)y¢=1x+1+x2×(x+1+x2)¢=1x+1+x2×(1+2x21+x2)=11+x2, y¢¢=-112xx×(1+x2×)¢=-×=-1+x21+x221+x2)(1+x)21+x. 2. 设f(x)=(x+10)6, f ¢¢¢(2)=? 解f ¢(x)=6(x+10)5, f ¢¢(x)=30(x+10)4, f ¢¢¢(x)=120(x+10)3, f ¢¢¢(2)=120(2+10)3=207360. 3. 若f ¢¢(x)存在, 求下列函数y的二阶导数d2ydx2: (1) y=f(x2) ; (2) y=lnf(x) . 解 (1)y¢= f ¢(x2)×(x2)¢=2xf ¢(x2), y¢¢=2f ¢(x2)+2x×2xf ¢(x2)=2f ¢(x2)+4x2f ¢(x2). (2)y¢=1 y¢¢=f(x)f¢(x), =f¢¢(x)f(x)-f¢(x)f¢(x)f(x)2f¢¢(x)f(x)-f¢(x)2f(x)2. 4. 试从dx=1导出: dyy¢ (1) (2)y¢¢d2x=-dy2(y¢)3; . ddyd3x3(y¢¢)2-y¢y¢¢¢=dy3(y¢)5d2xd=dy2dy 解 (1)(dxdy)=(1)=dy¢dx(dy¢¢¢¢1)×dx=-y2×1=-y3y¢dy(y¢)y¢(y¢). y¢(y¢)3y¢¢y¢¢y¢¢¢(y¢)3-y¢¢×3(y¢)2y¢¢13(y¢¢)2-y¢y¢¢¢dddx()()=-=-×=-×= (2)dx. 33365dydy(y¢)dx(y¢)(y¢) 5. 已知物体的运动规律为s=Asinwt(A、w是常数), 求物体运动的加速度, 并验证: dtd2s+w2s=02dt. 解 ds=Awcoswt, 2s d2=-Aw2sinwt. dtd2sdt2就是物体运动的加速度. dt2s d2+w2s=-Aw2sinwt+w2Asinwt=0. 6. 验证函数y=C1elx+C2e-lx(l,C1,C2是常数)满足关系式: y¢¢-l2y=0 . 解 y¢=C1lelx-C2le-lx, y¢¢=C1l2elx+C2l2e-lx. y¢¢-l2y=(C1l2elx+C2l2e-lx)-l2(C1elx+C2e-lx) =(C1l2elx+C2l2e-lx)-(C1l2elx+C2l2e-lx)=0 . 7. 验证函数y=e xsin x满足关系式: y¢¢-2y¢+2y=0 . 解 y¢=exsin x+excos x=ex(sin x+cos x), y¢¢=ex(sin x+cos x)+ex(cos x-sin x)=2excos x . y¢¢-2y¢+2y=2excos x-2ex(sin x+cos x)+2e xsin x =2excos x-2exsin x-2excos x+2exsin x=0 . 8. 求下列函数的n阶导数的一般表达式: (1) y=xn+a1xn-1+a2xn-2+ × × × +an-1x+an (a1, a2, × × ×, an都是常数); (2) y=sin2 x ; (3) y=x ln x ; (4) y=x ex . 解 (1) y¢=nxn-1+(n-1)a1xn-2+(n-2)a2xn-3+ × × × +an-1 , y¢¢=n(n-1)xn-2+(n-1) (n-2)a1xn-3+(n-2)(n-3)a2xn-4+ × × × +an-2 , × × ×, y(n)=n(n-1)(n-2)× × ×2×1x 0=n! . (2) y¢=2sin x cos x=sin2x , y¢¢=2cos2x=2sin(2x+p), 2 y¢¢¢=22cos(2x+p)=22sin(2x+2×p), 22 y(4)=23cos(2x+2×p)=23sin(2x+3×p), 22 × × ×, p y(n)=2n-1sin2x+(n-1)×. 2 (3) y¢=lnx+1,