欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    方差分析与相关性分析资料课件.ppt

    • 资源ID:3054524       资源大小:1.05MB        全文页数:49页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    方差分析与相关性分析资料课件.ppt

    方差分析(analysis of variance,简称为ANOVA),方差分析是对多个样本平均数差异显著性检验的一种方法,也就是推断对多个样本均数是否相等的方法。,方差分析的适用条件 各处理组样本来自正态总体 各样本是相互独立的随机样本 各处理组的总体方差相等,即方差齐性,方差分析(analysis of variance,简称为ANOVA),方差分析单因素方差分析双因素方差分析(重复试验和非重复试验)多因素方差分析协方差分析,方差分析(analysis of variance,简称为ANOVA),单因素方差分析单因素方差分析也叫一维方差分析,用以对单因素多个独立样本均数进行比较,给出方差分析表,并可以进行两两之间均数的比较(多重比较),本节将介绍如何利用单因子方差分析命令对数据进行统计处理。,方差分析(analysis of variance,简称为ANOVA),方差分析(analysis of variance,简称为ANOVA),1 在三个不同密度的小麦地里测量其株高2/3处的日平均温度,一共测量6天,所得数据如下表,分析不同密度的小麦地其株高2/3处的日平均温度有无显著差异。(密度1密度2密度3),方差分析(analysis of variance,简称为ANOVA),方差分析(analysis of variance,简称为ANOVA),方差分析(analysis of variance,简称为ANOVA),方差分析(analysis of variance,简称为ANOVA),单因素方差分析齐次性检验结果:t=0.357,p=0.7060.05,通过方差齐次性检验。即本例属于方差相等时的方差分析问题,这为下面的分析作准备。,方差分析(analysis of variance,简称为ANOVA),单因素方差分析结果,包括组间离差平方和、组内离差平方和总离差平方和。从表中可知,p=0.0330.05,说明三个不同密度的小麦群体中2/3高度的温度差异显著。进而可以进行多重比较。,方差分析(analysis of variance,简称为ANOVA),多重比较结果,从表中可知密度1和密度3两两之间差异显著;密度1和2,2和3之间差异不显著。,方差分析(analysis of variance,简称为ANOVA),方差分析(analysis of variance,简称为ANOVA),单变量单因子方差分析单变量方差分析属于广义线性模型(General Linear Model)中的一部分,本分析包括的范围非常广泛,既可以分析单因子,也可以分析多因子,还可以进行协方差,最后给出方差分析表,并可以进行多重比较。和单因子方差分析(One way ANOVA)相比,单因子方差分析中的都可以在本分析中实现。,1 在三个不同密度的燕麦地里测产,每个密度取样测了6块地,数据如下表,试问不同密度小麦地产量有无差异,差异来自那两个密度之间。(密度1密度2密度3),从表中可知,p=0.0470.05,说明三个不同密度的燕麦产量差异显著。进而可以进行多重比较。,多重比较结果,从表中可知密度1和密度3两两之间差异显著;密度1和2,2和3之间差异不显著。,回归分析与相关分析回归和相关的概念,回归分析内容,相关分析,2 下表为青海一月平均气温与海拔高度及纬度的数据,试分析一月平均气温与海拔高度,一月平均气温与纬度是否存在线性关系(计算一月气温分别与海拔高度和纬度的简单相关系数)。,从上表可知,一月气温与海拔高度和纬度的相关系数分别为-0.728和-0.186,说明一月气温与海拔高度和纬度均呈负相关关系;进一步对照其所对应的显著性分别为0.0070.05,表明一月气温与海拔高度的相关性显著,而一月气温与纬度的相关性不显著。,2 下表为青海一月平均气温与海拔高度及纬度的数据,试分析一月平均气温与海拔高度和纬度的偏相关系数(因为第三个变量纬度(海拔)的存在所起的作用,可能会影响纬度(海拔)与一月平均温度之间的真实关系)。,将-0.728与-0.941对照;同时再与前面讲的例子对照看有什么不同,从表中可知-0.728是一月温度和海拔高度的简单相关系数;而-0.941是一月气温与海拔高度的偏相关系数,将-0.186与-0.875对照;同时再与前面讲的例子对照看有什么不同,3 一条河流流经某地区,其降水量X(mm)和径流量Y(mm)多年观测数据如表所示。试建立Y与X的线性回归方程,并根据降水量预测径流量。,回归分析(一元线性回归),从表中可知FF0.01(p0.01),说明方程通过了显著性检验,说明径流量与降水量之间存在着极显著的直线回归关系,方程检验表,从表中可知tt0.01(p0.01),说明方程中的回归系数通过了显著性检验,说明径流量与降水量之间有真实的直线回归关系。,系数检验表,4 随机抽测某渔场16次放养记录,结果如表(投饵量,放养量,鱼产量)。试求鱼产量对投饵量、放养量的多元回归方程。(要求进行方程和系数的显著性检验),回归分析(多元线性回归),方程检验表,从表中可知FF0.01(p0.01),说明方程通过了显著性检验,说明鱼产量依投饵量、放养量的二元线性回归达到显著水平,系数检验表,从表中可知X1和X2对应的t均大于t0.01(p0.01),说明投饵量和放养量对鱼产量的偏回归系数达极显著水平,偏回归系数通过显著性检验,即鱼产量与投饵量、放养量之间存在真实的多元线性关系。因此,所建方程为Y=-4.349+0.584X1+2.964X2,

    注意事项

    本文(方差分析与相关性分析资料课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开