北师大版七年级下册数学第二章21两条直线的位置关系ppt课件.pptx
1 两条直线的位置关系,a,1.从生活实例中抽象出相交线、平行线,概括出相交线、平行线的概念;2.通过具体实例观察对顶角、余角、补角等的特征,认识对顶角、余角、补角概念;3.探索并说出对顶角相等,同角(等角)的余角相等,同角(等角)的补角相等的性质,并能用这些性质解决一些简单问题。,平行,只有一个公共点的两条直线叫相交线。在同一平面内,不相交的两条直线叫做平行线.,在同一平面内,两条直线的位置关系是平行或相交.,【定义】,【小组合作】在空白处,任意画出两条相交直线AB和CD,交点于O问题1:AOC与BOD的位置有什么关系?(提示:从点、边的角度考虑)问题2:AOC与BOD的大小有什么关系?如何来证明你的结论呢?,1,2,A,C,D,B,O,1,2,A,D,C,B,O,像 1与2,AOC与BOD一样,两个角有公共的顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.,对顶角相等,定义:,性质:,3,4,A,D,在右图中,1与3有什么数量关系?,1.下图中有对顶角吗?若有,请指出,若没有,请说明理由.,B,O,A,O,C,1,2,C,C,O,(1),(2),(3),【做一做】,2.如图直线AB、CD相交于一点,若2=35,则1=?4=?,【做一做】,35,145,1.下列哪些角互为余角?,哪些角互为补角?,抢答题:老师编一道有关余角或者补角的题目,小组抢答。问题2:下列说法正确的有。(填序号)已知A=40,则A的余角等于50若 1+2=180,则1和2互为补角。若1+2+3=180,则1、2、3互补若A=4026,则A的补角=13934一个角的补角必为钝角。,【小组合作1】(1)如图1,若直线AB与直线CD相交于点O,则1与3都是2的 角,且大小 理由?,图1,(2)如图2,若AOB=COD=90,则 1与 3的大小关系如何?理由?,图2,1.1与2大小有什么关系?为什么?2.AOD与BOC有什么关系?为什么?,如图,3=4,COE=DOE=90,【小组合作2】,等角的余角相等,等角的补角相等,同角的余角相等,同角的补角相等,1.因为1+2=90,3+2=90,所以1=,理由是;因为1+2=180,3+2=180,所以1=,理由是.,3,同角的余角相等,同角的补角相等,2.如图中三角板,A是B的。,变式训练:在的基础上,做CDA=900。则A的余角有哪几个?为什么?,(1)30,70与80的和为平角,所以这三个角互补.()(2)一个角的余角必为锐角.()(3)不相交的两条直线是平行线.()(4)两角是否互补既与其大小有关又与其位置有关.(),1.判断下列说法是否正确,【巩固拓展】,2.如图直线AB与CD交于点O,EOD=900,回答下列问题:AOC的余角是;补角是;对顶角是。,【巩固拓展】,COE,COD和AOB,DOB,3如图,直线AB,CD相交于点O,OE平分AOD,若BOD=100,则AOE=_.【解析】AOD+BOD=180,AOD=180-100=80.OE平分AOD,AOE=AOD=40,【巩固拓展】,40,一、余角、补角、对顶角的概念:,二、余角、补角、对顶角的性质:,1.和为90的两个角称互为余角;2.和为180的两个角称互为补角;3.有公共顶点,且两边互为反向延长线的两个角称为对顶角,1.同角或等角的余角相等;2.同角或等角的补角相等;3.对顶角相等.,当 堂 检 测,1.如图,1与2是对顶角的是()2.下列选项中,互为补角的一对角是()A.20与70 B.35与145 C.30与160 D.15与145,C,B,当 堂 检 测,C,3.已知1+2=90,3+4=180,下列说法正确的是()A 1是余角 B 3是补角 C 1是2的余角 D 3和4都是补角4.若一个角的余角是30,则这个角的补角为 _度,120,当 堂 检 测,5.已知COE=BOD=AOC=90,则图中与BOC相等的角为_,与BOC互余的角为 _,DOE,COD、BOA,