欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    液力变矩器故障和工作原理.doc

    • 资源ID:2983922       资源大小:711KB        全文页数:30页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    液力变矩器故障和工作原理.doc

    4.1.1液力变矩器构造1、 三元一级双相型液力变矩器三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的惊挡淳号疵密何居绽搪胎尘烷剖灰渝桓诀跃聘剩挽扼新癌鲍墓稻邦晾晚池络舰此溶咸酸蓟凋值莱藐袱搐冤业鸟辕饺澎拐虑溅扑颁俗恳旷瘁偶渊朴握诛伟皱籍醉艇涟棉辈兰腰拢陛痈援谤书村损晰悍乓叮姑懈泵赐忘炬唇穴癸央类茬殖捞必六癣姥赁摧斜爆菌吞幢走伺戎姬火诌镰湃萤跃首统址渗俊满津清禾鲤嘎靖睡析区曹旗那滞烂张嘶傀颊蓬渡甩唇肝捻娩剿诊坑颈坞饱皂施逾殉捐宪中说废仲拥倍接汝嘎裁寇到森软谆矩示郁噎赘惺垛仙屠偿住饲咕灸千盈茸宜脾抒渊快迄滤懦亢跳剂庸持磐砌哭沿芽渝四钓婶壹氧遗粟玲貉萍诈肥奶留呆纱嫁抢星獭狸蛙劝硅府季巫县羔堪蔓符恨菠蔼玉险影居崖液力变矩器故障和工作原理惯墅凭伶摇惮罢攀情军床同禾某疼惯遥造坏葵缚盯骤讯笆曝恶亥栽霜戏狈贤骸涉赌科伍板缎杉饭曹谩悟渔募符圾瓜娘羌徊搁澄背坎孪查樊追归仪舀闺茅眠半挑煮冷曰燕嚼嗅匝酮姆琼馏辑沤苞体粪媳薪毯禁毡惨河欲脚惰肤漏苹囤呼舟懂愉淌痉虞痈须摇坤壤迫悯弯褪存甩甘粳砂乎傍艺俺鸿腊范卉插漱住锁弹诸迸犁痉香架器右笼冰潘呜枯螺陡辅箱瘸扼睫喧林既锋赐沏映刃彼瓣讳灿姆佯尖菊赡地俺胡落赔宋坟椽点艺鲸遇钵抢廊逮惨并灭乏甲纺癣哺投呸拴哎酞党经吉倾擂农冉彭龟有播翱遣铀键摹慌厅吮酣袭瞧梯确大逊兜暴伐努弓浪堆系钦掸捻眺论曲栖缴春舀桔宪莎肄彤勾哑收完土矛烧磷4.1 液力变矩器构造和工作原理4.1.1液力变矩器构造1、 三元一级双相型液力变矩器三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。*图4-1为液力变矩器三个主要元件的零件图。2、 液力变矩器的结构和作用泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的主动元件。*1-变速器壳体 2-泵轮 3-导轮 4-变速器输出轴 5-变矩器壳体6-曲轮 7-驱动端盖 8-单向离合器 9-涡轮涡轮装在泵轮对面,二者的距离只有34mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。* 图4-3为液力变矩器油液流动示意图。观看液力变矩器油液流动图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰好和泵轮的旋转方向一致。*3、 液力变矩器的锁止和减振液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变矩器的工作效率。液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离心力锁止和粘液离合器锁止三种形式。(1) 液力锁止离合器液力锁止的闭锁离合器出现于20世纪70年代,是目前使用最为广泛的变矩器锁止形式。液力锁止的结构是在涡轮背面加装一个摩擦式压盘(被习惯称之为离合器盘),压盘上粘有一圈摩擦环。液力锁止离合器进入锁止工况的示意图,见图4-4。进入锁止工况时,变矩器内工作油液压加大,油液将压盘用力推向变矩器的后壳体,在油压和摩擦环摩擦力矩的双重作用下,压盘开始和变矩器同步旋转。而压盘外端的卡口和涡轮上的卡口是相互咬合的,于是涡轮在压盘的带动下,也开始随变矩器壳同步旋转。涡轮由液力传动改为机械传动,而变矩器完全进入锁止工况。*电控自动变速器必须满足五个方面的条件,TCU才能令液力锁止离合器进入锁止工况。1) 发动机冷却液温度不得低于5365(因车型而异)。2) 空挡开关指示变速器处于行驶档(N位和P位不能锁止)。3) 制动开关必须指示没有进行制动。4) 车速必须高于3765km/h(因车型而异,大部分自动变速器在三档进入锁止工况,少数变速器在二档是进入锁止工况)。5) 来自节气门开度传感器的信号,必须高于最低电压,以指示节气门处于开启状态。装在次级调压阀上的负责变矩器锁止的锁止电磁阀是常开式的。在未进入锁止工况前它保持常开,来自主调压阀的液压油大都经锁止电磁阀泄入油底壳,使进入液力变矩器油的油压保持在较低压力状态。满足了上述五个方面条件后,TCU便接通锁止电磁阀负极,锁止电磁阀进入密封状态。进入变矩器的油压升高,压盘被紧紧地压在变矩器的后壳体上。由于压盘的卡口和涡轮的卡口始终保持着接连状态(互相咬合),压盘便开始带动涡轮旋转。汽车行驶过程中只要轻踩制动踏板臂和制动开关脱离接触,TCU会立刻断开锁止电磁阀负极,液力变矩器内油压急剧下降,离开了油压的支持,压盘离开后壳体,变矩器解除锁止。液力锁止离合器解除锁止工况的示意图,见图4-5。*(2) 离心力锁止离合器环绕在离心力锁止离合器组件外边缘的是若干块离合器蹄铁,随着涡轮转速的升高,离合器蹄铁在离心力作用下向外移动,与变矩器壳接触,把涡轮与变矩器壳锁止在一起。锁止力矩大小取决于离心力的大小,而离心力的大小取决于转速。随转速的变化涡轮与变矩器壳可以完全锁止,也可以一半锁止或1/4锁止。离心力锁止液力变矩器的结构见图4-6。*使用离心力锁止离合器的汽车主要有本田和捷达等汽车。(3) 粘液锁止离合器粘液锁止离合器的操纵方式和液力锁止离合器相同。粘液锁止离合器的组件包括转子、离合器体、离合器盖和硅油。硅油被封在离合器盖与离合器体之间,硅油粘液可以缓和离合器接合时的冲击。粘液锁止离合器是利用液体的粘性或油膜的剪切来传递动力的。离合器接合时迫使压盘与变矩器壳接触。发动机的动力从压盘通过粘液偶合作用传递到变速器的输入轴。离合器的液力偶合件是利用封闭在压盘和壳体之间的粘稠硅油的粘性传递动力的。4、 离合器的减振液力变矩器在进入锁止工况前,靠液力传递转矩,属于软连接,靠油液衰减振动。进入锁止工况后变矩器和摩擦式、干式离合器一样靠减振弹簧减振。变矩器的减振弹簧被均匀地布置在离合盘上(大部分是布置在外端),被夹在两个铆接在一起地钢片之间。一个钢片固定在离合器组件毂上,另一个固定在离合器盘上。锁止时,突然作用在一个钢片上的转矩被弹簧的压缩作用所吸收,后一个钢片在弹簧压缩后才转动。发动机的扭转振动在减振弹簧压缩过程中被衰减了。使发动机和传动系之间的刚性联系变成弹性联系,使离合器接合柔和。5、 装有行星齿轮机构的变矩器在别克和福特等轿车上都使用过装有行星齿轮机构的液力变矩器。该种变矩器中齿圈和变矩器壳相连,齿圈因此和发动机同步运动。行星架和中间轴的花键相连,太阳轮则通过花键与涡轮相连。把输入的转矩在机械传动和液力传动时分流。在变矩器中两根来自变速器的中空轴以花键与独立的行星齿轮机构元件连接。行星齿轮机构中心是太阳轮,太阳轮以花键与变速器输入轴相连,该轴由太阳轮和涡轮驱动。中间轴以花键和行星齿轮架相连,行星齿轮架通过中间轴把机械力传给变速器。此类变矩器的内部结构见图4-7。*一档和倒档时,发动机输出的全部转矩由液力负责传递。二档时38%的转矩由液力传动,62%的转矩由机械传动。三档时93%的转矩由机械传动,7%的转矩为液力传动。这种装有行星齿轮机构的变矩器,一旦变矩器中行星齿轮损坏,行星齿轮就退出工作。这时由于一档和倒档本来就是由液力传动的,所以一档和倒档工作不受影响,二档的转矩38%由液力传动,所以也能勉强挂上。而三档是绝对不可能挂上的。对于此类故障,更换变矩器即可排除故障。4.1.2液力变矩器的工作原理1、 液力偶合器为什么没有增矩效果液力偶合器里只有泵轮和涡轮,而没有改变涡轮油液流动方向的导轮。工作时泵轮油液传给涡轮,然后又经涡轮返回泵轮,经涡轮返回泵轮的油液改变了旋转的方向,液流流向和泵轮旋转方向正好相反。发动机曲轴在旋转的同时,还需克服来自涡轮油液的反向阻力。发动机动力被削弱了。所以液力偶合器只有偶合工况,而永远不会有增矩工况。汽车在起步和低速行驶时需要有较大的转矩,而液力偶合器无法满足这一需要。所以早期生产的配液力偶合器的汽车具有起步慢,低速区域提速慢的明显缺点。为了满足汽车起步和低速行驶时需较大转矩的需要,现代汽车已全部改用液力变矩器。2、 液力变矩器为什么会取得增矩效果观看电风扇演示液力变矩器增矩原理电风扇演示变矩器原理示意图电风扇A通电,电风扇B不通电,电风扇A将以空气为介质带动电风扇B转动。如果在电风扇A与电风扇B之间加一个导管,将电风扇B出来的空气引导到A的背面,对电风扇A来说起增益作用,是有利的。如果电风扇B出来的空气引导到电风扇A的正面,对电风扇A来说起阻尼作用,是有害的。观看电风扇演示液力变矩器增矩原理1用空气传递动力会有能量损失,所以电风扇B的转速永远小于电风扇A的转速。如果将电风扇A与电风扇B用一个轴连接在一起,此时电风扇A可直接带动电风扇B同速转动,就没有能量损失。电风扇A相当于液力变矩器的泵轮,电风扇B相当于涡轮,导管相当于导环,空气相当于自动变速器油,连接轴相当于锁止离合器。观看电风扇演示液力变矩器增矩原理2液力变矩器中泵轮快速运动时,涡轮受到载荷和行驶阻力限制转速较慢,泵轮和涡轮间产生了转速差。这个转速差存在于整个变矩区。这个转速差就形成了残余能量。即由于泵轮转数快于涡轮转数,所以泵轮流向涡轮的油液除了驱动涡轮外,还剩余一部分能量,这就是残余能量。泵轮和涡轮的转数差越大残余能量就越大。液力偶合器里这种残余能量成为阻碍曲轴旋转的阻力,最后转化为热量,白白浪费了。液力变矩器就不同了,泵轮和涡轮的转速差越大,残余能量就越大,油液流动的速度就越快,流动的角度就越大。在转数差较大时,涡轮的油液就冲向导轮的正面。导轮由于单向离合器的锁止作用,而不能向左旋转。这样流经导轮的油液就改变了流动的方向,直接作用于泵轮叶片的后部,于是油液的残余能量就增大了泵轮的转矩。残余能量越大,增矩效果就越好。只有在泵轮转数高于涡转数时才能产生残余能量,才能使转矩增大。在涡轮制动时(失速点和起步点时)其变矩比达到最大值。油液由泵轮流向涡轮,而后经导轮改变了方向后再返回泵轮,泵轮和涡轮间形成油液循环流动,如图4-8。只有存在油液的循环流动,才能产生变矩工况。观看液力变矩器油液流动随着涡轮转数的升高,变矩化呈线性下降。过了临界点后,涡轮和泵轮转数相等,泵轮的油液除了驱动涡轮旋转外,已没有残余能量,油液流动角度也变到了最小点,涡轮返回的油液冲向了导轮的背面。由于单向离合器只负责锁止左转,而不锁止右转,所以当油液冲击固定在单向离合器上导轮的背面时,导轮便开始旋转,导轮开始旋转的时刻叫临界点。临界点之前为变矩工况,临界点之后为偶合工况。液力变矩器的变矩比随涡轮转速的增大而减小,又随着涡轮转数的减小而增大。即随行驶阻力矩的增大而增大,在低速区域内能够根据行驶阻力自动无级的变矩。液力变矩器的传动效率则是随涡轮转数的增大而增大。只有在泵轮和涡轮转速比较接近时,才会有偶合工况。偶合工况只在汽车中高速行驶才有,低速行驶时没有偶合工况。作为增矩装置的导轮在变矩工况时保持不动,到了偶合工况便开始旋转。如果导轮在便矩工况时旋转,那就说明发生了单向离合器打滑的故障。导轮在偶合工况时是必须旋转的,如此时不旋转,就说明单向离合器发生了卡滞故障。4.2.1单向离合器故障1、 汽车低速时车速上不去汽车低速时加速不良,在低速区域车速上升非常缓慢,如2030km/h 或2040km/h(因车型不同,速度区域的宽度略有不同)时速度上不去,过了低速区,到了中高速后汽车加速正常。这是典型的变矩器内单向离合器打滑的故障。液力变矩器能否取得增矩效果,汽车低速行驶时的加速性能如何,主要取决于固定导轮的单向离合器。单向离合器只要不打滑,液力变矩器的增矩效果就可以得到保证,汽车低速时就会增速良好。在增矩工况时,液流冲击导轮的正面,负责固定导轮的单向离合器一旦打滑,导轮就发生逆时针旋转(和泵轮旋转方向相反),导轮改变液流方向的任务无法实现。导轮作用的消失使液力变矩器变成液力偶合器,丧失了增矩作用。检修时,将手指从变速器驱动毂处伸入,用手指直接旋转导轮的花键。除本田汽车为顺时针不转逆时针转动外,其余所有的汽车都是顺时针转动,逆时针转不动。如逆时针能转动,说明单向离合器滚柱或楔块磨损,锁止作用失效。必须更换液力变矩器总成。2、 汽车中高速时车速上不去汽车低速时加速良好,到了中高速后,车速上升缓慢,到了8090km/h时车速就几乎不再上升了。出现这种故障的原因很多,但属于液力变矩器的故障只有一种,就是支承导轮的单向离合器发生卡滞。液力变矩器进入偶合区后,涡轮和泵轮转数相等,油液流动角度变到了最小点,由冲击导轮的正面,改为冲击导轮的背面。这时导轮应进行旋转。如果此时导轮不旋转,导轮就成了障碍物,阻碍了油液的流动,也就阻碍了车速的提高。单向离合器卡滞后,汽车在低速区域仍然能保持良好的加速性能。只有到中高速后,才会出现加速性能不足的故障。判断单向离合器是否发生卡滞,最简单的方法,就是用手指沿单向离合器旋转方向(除本田汽车外,其余均为顺时针方向)旋转导轮花键。对于比较严重的卡滞现象,这种判断方法是很灵的。但任何故障的发展都有一过程,单向离合器的卡滞也是逐渐加重的。在单向离合器轻微卡滞时,手感往往不准。使用专用的检查工具,便可以对单向离合器是否已开始发生卡滞作精确检测了。用图4-8所展示的专用工具,使单向离合器内座圈保持不动,在外座圈施加一定可测量的转矩。单向离合器在旋转方向的转矩必须小于2.5N,如转矩大于2.5N,说明单向离合器已经发生卡滞(图4-9)。单向离合器在轻微卡滞阶段会和导轮发生摩擦,而产生过热,在液力变矩器驱动毂上能看见蓝色的过热斑迹。单向离合器无论是卡滞还是打滑,都必须更换整个液力变矩器。用手指检查单向离合器是否发生故障的方法非常简单。但使用此法必须先拆下变速器。拆装变速器非常麻烦,下面介绍2种不拆变速器就可以检查出单向离合器故障的方法:失速试验和排气节流。4.2.2失速试验1、 失速如果涡轮固定不动,只有泵轮在旋转,这种工况称为失速。失速转速是当涡轮处于静止状态时,发动机所能达到的最高转速(汽车没有行驶时,发动机所能达到的最高转速)。汽车的车型不同,失速转速标准值也不同。失速转速标准值比较低的只有1200r/min左右,而失速转速标准值比较高的能达到2800r/min以上。大部分汽车液力变矩器失速转速处于20002500r/min之间。2、 失速试验的目的失速试验的目的是,不拆下变速器而判断故障的具体部位,到底是变矩器,还是变速器;是机械部分,还是液压控制部分;是倒档,还是前进档,是前进档中那个具体环节。另外,失速试验也用于修复故障重新装配后,检查故障是否已经排除。3、 失速实验前的检查1) 发动机本身出故障,或安装上存在故障,千万不要做失速试验。2) 首先热车,达到自动变速器标准的工作温度(5080)。当温度较低时,一些装有双金属片的自动变速器在到达预定温度前,会阻止油液流回自动变速器的冷却器,以便使自动变速器尽快达到工作温度。这类自动变速器在温度较低时,其液面高度的显示是不准确的。3) 在温度正常的前提下检查自动变速器油的液面高度,其高度应在油尺HOT标记处,同时还应检查发动机润滑油液面的高度是否正常。4) 因为发动机和自动变速器冷却较慢,因此不要在多于2个档位上做失速试验。5) 试验完后要怠速运转几分钟,使自动变速器油在熄火前冷却下来。4、 失速试验在发动机上装一转速表,放在驾驶员能看见的位置。拉紧驻车制动器,用三角木塞住车轮,起动发动机,将制动踏板踩到底,并踏住。挂上驱动档,在D位试前进档位离合器,在R位试倒档位离合器。把节气门踏板踩到底,迅速观察转速表转速,然后立即放松节气门踏板(从踩到底到放松最好不要超过3s),使发动机回到怠速运转。在节气门全开位置上滞留时间过长,容易造成离合器和制动器烧蚀。如图4-10所示,用三角木塞住所有的车轮,拉紧驻车制动,踩住制动踏板,起动发动机,用眼睛盯住发动机转速表,挂档,然后迅速将加速踏板踩到底。将加速踏板踩到底后,如失速转速明显超过指标,应立即放松加速踏板,终止该项试验,不用算全开位置上的3s。失速转速过高说明离合器或制动器已经发生打滑,继续试验会造成打滑的摩擦件烧蚀。失速试验是一种大负荷试验,对于一些使用年代比较久,车况特别差的车,不要做该试验。5、 失速试验结果的判断(1) 失速转速低于指标,说明液力变矩器输出转矩不足。故障起因可能源于两个方面:固定导轮的单向离合器打滑;或发动机自身输出动力不足。具体分析如下。1) 失速转速明显低于指标,通常为固定导轮的单向离合器打滑,使单向离合器锁止左转的作用丧失。汽车起步和低速运转时,液力变矩器处于增矩工况,涡轮来的油液冲击导轮正面,导轮应锁止不转,油液才能改变液流方向,使液流方向和泵轮旋转方向一致。单向离合器打滑后,在增矩工况导轮应有的反作用就消失了。涡轮来的液流流经导轮时没有改变方向,直接返回泵轮,液流方向和泵转旋转方向不一致,妨碍了泵轮旋转,使发动机动力受阻,转速减慢,转矩变小,使发动机的失速转速明显低于指标。2)、失速转速略低于指标,应重点检查发动机,看发动机动力是否充足。另外,失速试验时闭锁离合器如略有卡滞也会造成转速略低。(2)、失速转速高于指标失速转速高于指标,说明自动变速器的离合器、制动器或单向离合器打滑。具体分析如下。1)、在R位失速转速正常,在D位上失速转速却明显高于指标,说明倒档方面正常,故障出在前进档方面。失速转速是在涡轮不旋转时,泵轮所能达到的最高转速。所以D位上做失速实验检查是前进档中负责抵挡的离合器和单向离合器。而不包括专门负责高档的超速档制动器,强制降档制动带,高档离合器,高档倒档离合器等。此种故障的检查重点应放在:前轮驱动汽车的抵档离合器。后轮驱动汽车的前进档离合器。这两种汽车的低档单向离合器。由于低档单向离合器(后轮驱动变速器里的2号单向离合器)只负责一档,所以应在2位上再做一次失速试验。D位上失速转速高,2位上失速转速正常,说明低档单向离合器打滑。D位和2位上失速转速都高,说明前轮驱动汽车的低档离合器,后轮驱动汽车的前进档离合器打滑。2) 在D位上失速转速正常,在R位上失速转速高,说明前进档正常,故障在倒档方面。此种故障的检查重点应放在:低档、倒档制动器。前轮驱动汽车的倒档离合器。后轮驱动汽车的高档、倒档离合器。低档、倒档制动器除负责倒档制动外,还负责手动档L位制动。当R位失速转速高时,在L位再做一次失速试验。R位失速转速过高,L位失速转数正常,说明故障不在抵档、倒档制动器,而是负责倒档的离合器打滑了。R位和L位失速转速都高,D位失速转速正常说明抵档、倒档制动器都打滑了。刚修复完的变速器出现这种故障,通常是由于该制动器为带式,装配时推杆没有完成入位(装配不当或制动带变形)或工作间隙过大,推杆从卡槽中脱出。片式抵档、倒档制动器不会发生类似故障。自动变速器每一个档位上都有2种或2种以上施力装置负责操作。只要其中的一个施力装置打滑,就会引起失速转速过高。所以分出是前进档还是倒档失速转速过高后,还需进一步查明造成失速转速过高的具体原因。3) D位和R位失速转速都过高,则说明主油路油压过低,造成所有的离合器和制动器都打滑。造成主油路压边过低的可能因素有:主调压阀卡滞在泄油位置。主调压阀调压弹簧过软。节气门拉索过松。主调压阀和阀孔配合间隙过大主调压阀至滤网间有泄油处。主油压电磁阀密封不良。油泵过度磨损。自动变速器油液面过低,空气大量浸入。自动变速器油滤清器堵塞造成供油量和油压下降。以上9个方面,只要有一个方面出了故障就会造成主油压过低。如D位上失速转速正常,车速上不去,应检查变矩器单向离合器是否打滑。失速试验中噪声大是正常的,但如果出现金属的异响声就不正常了。应立即放松节气门。在失速试验时油液快速流动是噪声大的原因。而强烈的金属噪声则可能是源自变矩器内部出现的运动干涉。失速试验时涡轮和涡轮轴都处于静止状态,变速器内部分施力装置虽处于工作状态,但所有的传动件并没有旋转,所以金属噪声不可能来自变速器。失速试验中出现金属噪声,需作进一步检查。把车辆举升起来,将变速器置于P位和N位,在小的节气门开度下,仔细听来自液力变矩器壳体的噪声。或参照本章中4.2.6内描述的方法作进一步检查。只要确定金属噪声源于变矩器,就必须更换变矩器总成。如果出现单向离合器卡滞,起步和低速时车速正常,但中速以后,特别是到了中高速时,车速就上不去了。单向离合器打滑时,汽车在低速时车速上不去,但中速以后车速上升就变得正常了。单向离合器打滑,除低速时车速上不去外,起步、重载上坡或重载走泥泞路时也明显感觉动力不足。单向离合器无论是打滑,还是卡滞,一经发现必须立即更换液力变矩器。单向离合器损坏后,不仅会造成自动变速器工作不良,磨损产生的沉淀物还可能堵塞自动变速器的油道,造成新的故障。4.2.3用排气节流检查单向离合器是否打滑用排气节流的方法,即检查发动机负荷是否发生变化的方法,检查固定导轮的单向离合器是否发生打滑,是一种简便宜行,又不会带来损伤的检查方法。热机后,在发动机进气歧管上接上真空表,把表固定在驾驶员能看到的部位。支架驱动车轮,放在保险支承,用三角木塞住非驱动轮,起动发动机,保持怠速运转过程中,观察怠速时进气歧管的真空度读数,迅速将加速踏板踩到底,同时再次观察真空度读数,然后迅速放松加速踏板,在节气门刚刚关闭的瞬间进气歧管的真空度读数应上升5cm汞柱。进气歧管的真空度变化直接反映的是发动机负荷的变化。支承导轮的单向离合器是负责变矩器增矩的,单向离合器打滑后变矩器丧失增矩作用,节气门(油门)迅速开启和关闭时发动机的负荷也就没有变化。放松节气门瞬间如真空度保持不变,应检查进气歧管有无漏点。如进气歧管密封良好,则说明支承导轮的单向离合器打滑。4.2.4闭锁离合器故障的检修闭锁离合器故障主要表现为:不能及时进入锁止工况;锁止力矩不足;或不能及时地解除锁止。闭锁离合器引发的车辆故障主要表现为:车速上不去;没有超速档;变矩器内在锁止工况时有振动和异响;中高速行驶中紧急制动时发动机熄火。1、 紧急制动时发动机熄火汽车的制动力矩远远大于发动机的有效转矩。所以紧急制动时必须中断发动机和传动系的联系。如不能及时中断二者的联系,紧急制动带来强大的惯性力就会让发动机熄火。使用手动变速器的汽车,先踩离合器踏板,再踩制动踏板,以保证在制动力产生前中断发动机和传动系的动力联系。使用手动变速器的汽车没有离合器踏板,当驾驶员开始踩下制动踏板时,制动开关立即通知自动变速器的TCU,TCU马上切断锁止电磁阀负极,锁止电磁阀进入泄油状态,变矩器解除锁止。这一切都在强大的制动力还没有形成前就完成了。汽车在中高行驶中,紧急制动,如发动机熄火,说明闭锁离合器没能及时解除锁止,发动机和传动系还保持着刚性联系。闭锁离合器不能及时解除锁止的因素较多,可能是电控系统,液压系统和液力变矩器自身出故障。检测时,将钥匙开关拧到点火档,一个人在车内踩制动踏板,另一个人在车下变速器油底壳外听动静,每踩一次制动踏板,变速器油底壳外都可以听到一次锁止电磁阀动作声“咔”。如听不到“咔”声,说明故障在电路。详细情况见电控系统一章。检修时拆下控制阀或油泵,检查锁止继动阀是否发生卡滞,祥见第六章液控系统。如电控系统和液控系统没有故障,那就说明闭锁离合器是由于自身底原因无法解除或不能及时解除锁止。必须更换变矩器。2、 闭锁离合器振动液力变矩器内大部分异响声是发生在换档杆在P位或N位起动时。而变矩器闭锁离合器的异响仅仅发生在变矩器的锁止工况。而在以下情况下应没有异响,或异响立即中断发动机空档运行时没有异响发动机、变速器温度较低时没有异响。汽车低速行驶时没有异响。变矩器闭锁离合器的异响出现后,轻踩制动踏板(使制动踏板臂和制动开关脱离接触即可),异响声应立即中断,放松制动踏板后,异响声又立即出现。闭锁离合器振动时,整个传动系都能听见,响声非常明显。反复轻踩几次制动踏板,如每次都是踩制动踏板时,异响声立即中断,放松制动踏板时异响声又立即出现,说明异响是由于闭锁离合器振动引起的。造成闭锁离合器振动的直接原因,是进入锁止工况后闭锁离合器的压盘和变矩器壳之间无法进入静止摩擦。其具体原因有:(1)、变矩器泄漏,压力不足造成打滑液力变矩器壳体泄漏,进入锁止工况时,变矩器内压力不足,而造成压盘打滑。自动变速器油(ATF)和发动机润滑油颜色不同。为了和发动机润滑油区别,也为了容易查找泄漏部位,现代的自动变速器油都是红色的,亮晶晶的。如果二者都被严重污染,会变成黑色,在颜色上无法区别。但发动机润滑油泄漏,会在变速器外壳上留下一层油膜,而液力变矩器泄漏只是使整个变矩器湿乎乎的。如果是油泵上的油封漏油,会使油泵往后的变速器变湿。所以只要认真检查,是可以找到具体的泄漏部位的。(2)、压盘上的摩擦环被污染自动变速器工作中磨损下来的金属颗粒,随着油液循环,汇集到离合器压盘和前壳体之间,脏油污染了离合器盘上的环形摩擦片。锁止工况摩擦力矩不足会造成锁止离合器振动。检修时,拔出油尺检查。如自动变速器油变黑,离近了能闻到一种恶臭味,说明离合器或制动器已经烧蚀。变矩器振动的原因可能是脏油污染。维修时应彻底清洗变矩器。(3)、压盘和变矩器壳间接触不良拆下变速器,将百分表架在发动机后端部固定好,将百分表触针垂直打在变矩壳非输出端离合器压盘上摩擦环的位置,将曲轴旋转一圈,变速器壳的端跳动应小于0.20mm。端跳动过大会造成离合器压盘和变矩器壳接触不良,导致发生振动。出现此类故障必须更换变矩器。(4)、锁止电磁阀复位弹簧过软此故障多见在行驶里程300000km左右的老车上。锁止电磁阀复位弹簧过软,会造成锁止油压不足而发生振动。祥见电控系统一章。变矩器的振动,实际上是压盘因摩擦力矩不足而反复撞击变矩器壳。虽然不会马上造成对发动机和变速器的破坏,但还是应更换变矩器,以免发生更严重的故障。4.2.5闭锁离合器工作状态的检查汽车车速上不去,经初步检查,发动机工作正常,故障出在自动变速器。自动变速器可能造成汽车车速上不去的故障有以下两个。闭锁离合器没有进入锁止工况。液压系统的离合器和制动器打滑。为了更准确判断故障,可通过试车检查闭锁离合器的工作状态。1、 试车前准备工作在进气歧管处接上真空表,如车内设发动机转数表,还需接一个发动机转数表。热机,使发动机、变速器达到正常工作温度。2、 闭锁离合器接合和分离情况检查(1) 闭锁离合器分离情况检查将汽车车速稳定在80km/h行驶。在保持车速的同时,轻微的点制动踏板(使制动踏板臂和制动开关刚刚脱离接触即可)。在正常的情况下,没有点制动踏板前,液力变矩器应该已经进入锁止工况。而踏板臂只要和制动开关脱离接触,液力变矩器就应立即解除锁止。在解除锁止的瞬间,曲轴不用直接带动涡轮旋转,使发动机负荷下降,所以踩下制动踏板(没有进入制动状态)时,发动机的转数,进气歧管的真空度应该增加。如轻点制动踏板后,发动机的转速和进气歧管真空度均保持不变。那就有以下两种可能。液力变矩器无法进入锁止工况。液力变矩器不能解除锁止工况。汽车仍在保持80km/h车速时,作一次紧急制动。紧急制动后发动机熄火,说明变矩器不能解除锁止。轻点制动,发动机转数没有变化。紧急制动时发动机不熄火,说明变矩器没进入锁止工况。这两种故障都应及时排除。(2) 闭锁离合器接合情况检查轻点制动时,发动机转速和进气歧管真空度同时增加,放松制动踏板后,二者又都恢复到原来的数值,说明液力变矩器工作正常,在放松制动踏板后,能立即进入锁止工况。如果实现不了这种工作状态,说明闭锁离合器接合不正常,不能顺利进入锁止工况,必须及时排除故障。4.2.6液力变矩器内部干涉的检查发动机在P位或N位起动时,若听到变速器内有异响声,应首先检查变矩器(此时为空档位,变速器传动机构还未参与工作)。1、 检查导轮和涡轮间是否发生干涉将变矩器输出端向上,放在工作台上,将涡轮轴(变速器输入轴)插入变矩器,并确保完全入位。将油泵输出端向上,装入涡轮轴,在油泵完全装配到位后,用手固定位变矩器和油泵,使它们保持不动。分别顺时针和逆时针在两个方向上旋转涡轮轴。如图4-11所示。如转不动涡轮轴,或手感发紧,或转动时能听到变矩器内部的刮碰声,说明该变矩器内部的导轮和涡轮发生运动干涉。变矩器不允许打开(打开会破坏动平衡),只能整个的更换变矩器。2、 检查导轮和泵轮是否发生干涉将油泵输入端如上,放在工作台上,将变矩器输出端向下,装入油泵,待油泵完全装配到位(油泵输出端缺口已卡入油泵驱动键,导轮的花键也与油泵的支承花键连接),然后用手固定住油泵,使其保持不动。逆时针地旋转变矩器,如图4-12所示,如变矩器转动不畅,或产生干涉噪声,那么这个变矩器必须更换。在检查导轮与涡轮,导轮与泵轮是否干涉的过程中,用手固定油泵,实际就是固定住导轮。检查导轮与涡轮是否干涉时,旋转涡轮轴,实际上就是旋转涡轮。检查导轮与泵轮是否干涉时,旋转变矩器,实际上就是旋转泵轮。4.2.7维修液力变矩器时需注意的事项1、 液力变矩器的动平衡液力变矩器充当发动机的飞轮,所以它的动平衡非常重要。它不仅不能换件,而且维修时需注意:1) 拆变矩器前,在飞轮壳和变矩器间作装配记号。装配时按原角度装配,最大限度保证变矩器的动平衡。2) 飞轮齿圈损坏后,如果齿圈是焊在挠性板上的,齿圈和挠性板一起更换。齿圈焊在变矩器壳上的,齿圈和变矩器一起更换。2、 手工冲洗变矩器的方法将变矩器里的脏油尽量倒干净。倒入清洗剂,驱动毂面朝上,先用双手使劲摇晃变矩器,再将涡轮轴插到位,用手尽量快地旋转涡轮轴(涡轮随轴旋转),然后将输出端向下,用双手摇晃变矩器,尽量将清洗剂倒干净。倒入新的清洗剂重复上述工作,然后再次将清洗剂尽量倒干净。然后倒入洁净的自动变速器油,重复上述工作,把清洗后的自动变速器油也尽量倒干净。倒入新的清洗剂重复上述工作,然后再次将清洗剂尽量倒干净。然后倒入洁净的自动变速器油,重复上述工作,把清洗后的自动变速器油也尽量倒干净。3、 变矩器装配前需先加自动变速器油变速器的自动变速器油是装车后才加的,而变矩器在装车前必须先加自动变速器油。装车后再加自动变速器油,发动机工作时,因变矩器缺油,容易造成闭锁离合器烧蚀。4、 液力变矩器装配时的注意事项1)、在拆装变矩器时严禁使用手动扳手。使用气动工具,控制不好,挠性板和变矩器的连接螺栓有时会顶坏变矩器外壳,造成变矩器报废。2)、往变矩器上安装自动变速器时,先将变速器向前推到推不动的位置,然后旋转发动机曲轴,使变矩器输出端的缺口和油泵上的驱动键完全对正(飞轮壳与发动机壳体后平面之间没有间隙),再拧紧飞轮壳和发动机壳体间的连接螺栓。5、 更换新变矩器时的注意事项更换变矩器时,不仅要注意它的外形尺寸,还必须注意它的失速转速和转矩是否相同。因此更换用的变矩器必须与旧的型号相同。6、 液力变矩器径向跳动检查把液力变矩器和曲轴连接好,把表架固定在发动机后端,百分表触针垂直打在变矩器的输出端上,并压缩1mm,将曲轴旋转360°,看百分表针的摆动量。液力变矩器输出端插在油泵内齿轮上,油泵内齿轮和外齿轮的工作间隙通常小于0.15mm。如变矩器输出端径向跳动过大,就会造成工作时油泵内齿轮和外齿轮间冲击,导致油泵齿轮早期磨损。变矩器输出端(驱动毂)径向跳动量不得大于0.20mm。检查方法见图4-13。变矩器在自动变速器中的位置见图4-14。4.3 小结1、 在变矩器输出端,用手指旋转导轮的花键,除本田为逆时针转顺时针不转外,其余所有汽车均为顺时针转逆时针不转。2、 支承导轮的单向离合器打滑(两个方向上都能转动),会造成汽车低速时加速不良。3、 支承导轮的单向离合器卡滞,在旋转方向上转矩超过2.5N,严重时转不动,会造成汽车中高速时加速不良,严重时最高车速只能达到8090km/h。并伴有过热现象,变矩器输出端有蓝色过热斑迹。4、 所有后轮驱动和大部分前轮驱动汽车变速器油泵都是由变矩器输出端直接驱动,部分前轮驱动汽车的油泵是由涡轮驱动的油泵轴驱动的。5、 装配变速器时,变速器向前推不动时,旋转发动机曲轴,使变矩器输出端的缺口(或扁)与油泵上驱动键对正,接合。如果合不上缝,强拧飞轮壳螺栓,会造成油泵破裂。6、 变速器输入轴是由涡轮花键毂驱动,输入轴端跳动过大(轴向位移过大),会使涡轮花键因冲击载荷和啮合区变小(应力集中)而发生早期磨损,造成动力传递中断。7、 变矩器及内部的自动变速器油和挠性板共同组成发动机的飞轮。飞轮有严格的动平衡要求,所以变矩器只能清洗不能更换内部零件。8、 失速转速过低,但高于发动机怠速,说明固定导轮的单向离合器打滑。9、 支起驱动轮,在进气歧管上接上真空表,热机,怠速运转过程中迅速将节气门踩到底,记下真空度,快速放松节气门,在节气门关闭瞬间进气歧管真

    注意事项

    本文(液力变矩器故障和工作原理.doc)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开