欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    车辆工程毕业设计(论文)轻型商用车主减速器设计【全套图纸】.doc

    • 资源ID:2981474       资源大小:2.81MB        全文页数:59页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    车辆工程毕业设计(论文)轻型商用车主减速器设计【全套图纸】.doc

    目 录摘 要IAbstractII第1章 绪 论11.1国内外主减速器行业现状和发展趋势11.2本设计的目的和意义21.3本次设计的主要内容2第2章 主减速器的设计32.1主减速器的结构型式的选择32.1.1主减速器的减速型式32.1.2主减速器齿轮的类型的选择42.1.3主减速器主动锥齿轮的支承形式62.1.4主减速器从动锥齿轮的支承形式及安置方法72.2主减速器的基本参数选择与设计计算82.2.1主减速比的确定82.2.2主减速器计算载荷的确定92.2.3主减速器基本参数的选择112.2.4主减速器双曲面齿轮的几何尺寸计算152.2.5主减速器双曲面齿轮的强度计算232.2.6主减速器齿轮的材料及热处理272.3主减速器轴承的选择282.3.1计算转矩的确定282.3.2齿宽中点处的圆周力282.3.3双曲面齿轮所受的轴向力和径向力292.3.4主减速器轴承载荷的计算及轴承的选择302.4本章小结34第3章 差速器设计353.1差速器结构形式的选择353.2对称式圆锥行星齿轮差速器的差速原理373.3对称式圆锥行星齿轮差速器的结构383.4对称式圆锥行星齿轮差速器的设计383.4.1差速器齿轮的基本参数的选择383.4.2差速器齿轮的几何计算403.4.3差速器齿轮的强度计算423.5本章小结43第4章 驱动半轴的设计444.1半轴结构形式的选择444.2全浮式半轴计算载荷的确定464.3全浮式半轴的杆部直径的初选474.4全浮式半轴的强度计算474.5半轴花键的计算474.5.1花键尺寸参数的计算474.5.2花键的校核494.6本章小结50结 论51参考文献52致 谢53附录A:54摘要本设计的任务是设计一台用于轻型商用车上的主减速器,采用单级主减速器,该减速器具有结构简单、体积及质量小且成本低等优点,因此广泛用于各种中、小型汽车上。例如,轿车、轻型载货汽车都是采用单级主减速器,大多数的中型载货汽车也采用这种形式。根据轻型载货汽车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速、发动机的最大功率、最大扭矩、排量等重要的参数,选择适当的主减速比。根据上述参数,再结合汽车设计、汽车理论、汽车构造、机械设计等相关知识,计算出相关的主减速器参数并论证设计的合理性。它功用是:将输入的转矩增大并相应降低转速;当发动机纵置时还具有改变转矩旋转方向的作用。本设计主要内容有:主减速器的齿轮类型、主减速器的减速形式、主减速器主动齿轮和从动锥齿轮的支承形式、主减速比的确定、主减速器计算载荷的确定、主减速器基本参数的选择、主减速器齿轮的材料及热处理、主减速器轴承的计算、对称式圆锥行星齿轮差速器的差速原理、对称式圆锥行星齿轮差速器的结构、对称式圆锥行星齿轮差速器的设计、全浮式半轴计算载荷的确定、全浮式半轴的直径的选择、全浮式半轴的强度计算、半轴花键的强度计算。全套图纸,加153893706关键词: 主减速比;主动齿轮;从动齿轮;差速器;行星齿轮 ABSTRACTThe design task is to design for a light commercial vehicle on the main reducer, using a single-stage main reducer, the reducer is simple in structure, size and quality of small and low cost, it is widely used in a variety of small and medium-sized car. For example, car, li-ght truck and are based on single-stage main reducer, the majority of medium-laden vehic-les were also using this form.According to the shape of light truck, Tread, wheelbase, minimum ground clearance, minimum turning radius, vehicle weight, loaded weight and the maximum speed, the engI-ne's maximum power, maximum torque, displacement and other important parameters, se-lect the appropriate The main reduction ratio. Based on the above parameters, combined w-ith the car design, automotive theory, automobile construction, mechanical design and oth-er related knowledge, to calculate the relevant parameters of the main reducer and demon-strate the rationality of the design.Its purpose is to: increase the input torque and lower speed; when the motor home also has a vertical change in the direction of the role of spin torque.The main elements of design are: the main type of gear reducer, speed reducer forms the main, the main driving gear reducer and the driven bevel gear supporting the form of the determination of the main reduction ratio, the main reducer of the calculation to deter-mine the load, the main reducer Basic parameters of the choice of the main reduce-rgear materials and heat treatment, the calculation of the main bearing reducer, pla-netary gear symmetric conical differential of the differential principle, symmetric co-ne of the structure of planetary gear differential, planetary symmetric cone different-ial gear design, the whole floating axle load calculation to determine the whole dia-meter floating axle option, all the strength of floating axle, the axle spline strength calculation.Key words: The main reduction ratio; gear; driven gear; differential; Planetary Gear第1章 绪论1.1 国内外主减速器行业现状和发展趋势中国汽车主减速器产业是紧随桑塔纳等合资项目的国产化配套战略成长起来的,发展时间不长。相比跨过公司,我国汽车主减速器企业多年来定位于汽车集团内部配套或服务于地方区域市场,国内竞争不充分,发展明显滞后于整车。主要表现在以下几个方面:一是市场竞争不充分,产业集中度低,企业规模效益普遍不高,不能适应零部件业规模化、低成本的发展要求。二是受体系供应链条的限制,不同地区的主减速器供应体系之间的供应链互相不交叉。三是主减速器供应以外资或合资企业为主,本土企业的专业化水平不高,产品技术含量低。国外汽车主减速器行业现状:一是零部件市场投资集中,易于形成较大经济规模,生产成本降低,利于实现通用化共享平台;二是主减速器企业产品研发投入力度大,便于技术水平提升,形成与主机厂的同步开发能力;三是这种现象导致其他国家主减速器企业跨地区、跨集团的资产重组难以实现上规模、上水平的目标,其后果是其产品的技术水平、生产成本、产品质量以及营销服务网络等与跨国公司的差距进一步拉大。 由于新的竞争环境的形成,以欧美日为代表的全球性汽车产业链正在逐步构成一个新型的汽车工业零整关系,我们可以清楚地看到世界汽车零部件企业正纷纷从整车企业中独立出来, 这极大地改变了原有汽车产业的垂直一体化分工协作模式,零部件企业与整车企业形成了对等合作、战略伙伴的互动协作关系。根据Ward's AutoWorld的最新调研表明,日本汽车业在近几年来通过建立起一种以追求团队精神和协调意识,运用战略联盟或外包的形式,加强与供应商和承销商之间合作的新型零整体系显得尤为富有成效。经由细致的功能与成本比较,研究自身优势所在,或有可能建立起的竞争优势,并集中力量发展这种优势;同时,从维护企业品牌角度研究企业的核心环节,保留并增强这些环节上的能力,把不具有优势的或非核心的一些环节分离出去,同时不断寻求能与之达到协同的合作伙伴,共同完成价值链的全过程。日本企业的做法,摆脱了“纵向一体化”的负面影响,将资源得以外延,借助零部件企业的资源达到快速响应市场的目的,于是出现了这一新型的“横向一体化”模式。发展趋势:世界汽车工业的全球化重组和我国汽车工业的迅猛发展,使汽车主减速器产业处于快速变化的环境中,我国汽车主减速器企业在发展战略的制定和实施过程中,还会不断出现新的问题,对已有问题的认识也在不断深化。这就要求我们与时俱进,开拓思想,不断提高对问题的认识,及时调整对策措施,从容应对,使企业稳步健康发展。当今世界各国齿轮和齿轮减速器向着六高、二低、二化方向发展的总趋势,即:高承载能力、高齿面硬度、高精度、高速度、高可靠性、高传动效率;低噪声、低成本;标准化和多样化。由于计算机技术、信息技术和自动化技术的广泛应用,齿轮减速器的发展将跃上新的台阶,从经济指标、产业链、宏观政策等多个角度刻画汽车主减速器发展变化,洞察行业发展动向,精确把握发展规律,可见中国本土汽车主减速器存在巨大发展空间。因此,此题目的设计尤为重要。1.2 本设计的目的和意义 随着加入WTO以来我国汽车市场的进一步开放,跨国汽车集团及零部件供应商纷纷调整了在华战略,将过去相对独立的“中国战略”转变为符合其长远利益和整体利益的“全球战略”,中国市场逐步成为其“全球战略”的重要组成部分,它们对中国市场的投资会进一步加大。可以预见,跨国汽车集团及核心零部件供应商对我国汽车产业的控制力会进一步增强。主减速器是驱动桥的重要组成部分,其性能的好坏直接影响到车辆的动力性、经济性。目前,国内减速器行业重点骨干企业的产品品种、规格及参数覆盖范围近几年都在不断扩展,产品质量已达到国外先进工业国家同类产品水平,完全可承担起为我国汽车行业提供传动装置配套的重任,部分产品还出口至欧美及东南亚地区。由于计算机技术、信息技术和自动化技术的广泛应用,主减速器将有更进一步的发展。对主减速器的研究能极大地促进我国的汽车工业的发展。1.3 本次设计的主要内容本设计的目标是设计一种轻型商用车的主减速器,本设计主要研究的内容有:主减速器的齿轮类型、主减速器的减速形式、主减速器主动齿轮和从动锥齿轮的支承形式、主减速比的确定、主减速器计算载荷的确定、主减速器基本参数的选择、主减速器齿轮的材料及热处理、主减速器轴承的计算、对称式圆锥行星齿轮差速器的差速原理、对称式圆锥行星齿轮差速器的结构、对称式圆锥行星齿轮差速器的设计、全浮式半轴计算载荷的确定、全浮式半轴的直径的选择、全浮式半轴的强度计算、半轴花键的强度计算。第2章 主减速器的设计根据轻型载货汽车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速、发动机的最大功率、最大扭矩、排量等重要的参数,选择适当的主减速比。根据上述参数,再结合汽车设计、汽车理论、汽车构造、机械设计等相关知识,计算出相关的主减速器参数并论证设计的合理性。2.1 主减速器的结构型式的选择主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。2.1.1 主减速器的减速型式主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。(1)单级主减速器如图2.1所示为单级主减速器。由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低廉的优点,广泛用在主减速比i<7.6的各种中、小型汽车上。单级主减速器都是采用一对螺旋锥齿轮或双曲面齿轮,也有采用蜗轮传动的。 图2.1单极主减速器 图2.2双级主减速器(2)双级减速如图2.2所示为双级主减速器。由两级齿轮减速器组成,结构复杂、质量加大,制造成本也显著增加,因此仅用于主减速比较大(7.6<i12)且采用单级减速不能满足既定的主减速比和离地间隙要求的重型汽车上,本车不采用。(3)双速主减速器双速主减速器 用于载荷及道路状况变化大、使用条件非常复杂的重型载货汽车。会加大驱动桥的质量,提高制造成本,并要增设较复杂的操纵装置所以本车不采用。(4)单级贯通式主减速器、双级贯通式主减速器单级贯通式主减速器、双级贯通式主减速器用于多桥驱动汽车上,本车为单桥驱动,所以不采用。(5)主减速器附轮边减速器 主减速器附轮边减速器应用于矿山、水利及其他大型工程等所用的重型汽车,工程和军事上用的重型牵引越野汽车及大型公共汽车等,本车不采用。综上所述,本车采用单级主减速器。2.1.2 主减速器齿轮的类型的选择在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。圆柱齿轮传动应用于发动机横置的前置前驱动乘用车和双级主减速器驱动桥。在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。 (a) (b) (c) (d)螺旋锥齿轮 双曲面齿轮 圆柱齿轮传动 蜗杆传动图2.3 主减速器的几种齿轮类型(1)螺旋锥齿轮其主、从动齿轮轴线相交于一点。交角可以是任意的,但在绝大多数的汽车驱动桥上,主减速齿轮副都是采用90º交角的布置。由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,因此,螺旋锥齿轮能承受大的负荷。加之其轮齿不是在齿的全长上同时啮合,而是逐渐地由齿的一端连续而平稳地转向另端,使得其工作平稳,即使在高速运转时,噪声和振动也是很小的2。 (2)双曲面齿轮其主、从动齿轮轴线不相交而呈空间交叉。其空间交叉角也都是采用90º。主动齿轮轴相对于从动齿轮轴有向上或向下的偏移,称为上偏置或下偏置。这个偏移量称为双曲面齿轮的偏移距。当偏移距大到一定程度时,可使一个齿轮轴从另一个齿轮轴旁通过。这样就能在每个齿轮的两边布置尺寸紧凑支承。这对于增强支承刚度、保证轮齿正确啮合从而提高齿轮寿命大有好处。双曲面齿轮的偏移距使得其主动齿轮的螺旋角大于从动齿轮的螺旋角。因此,双曲面传动齿轮副的法向模数或法向周节虽相等,但端面模数或端面周节是不等的。主动齿轮的端面模数或端面周节大于从动齿轮的。这一情况就使得双曲面齿轮传动的主动齿轮比相应的螺旋锥齿轮传动的主动齿轮有更大的直径和更好的强度和刚度。其增大的程度与偏移距的大小有关。另外,由于双曲面传动的主动齿轮的直径及螺旋角都较大,所以相啮合齿轮的当量曲率半径较相应的螺旋锥齿轮当量曲率半径为大,从而使齿面间的接触应力降低。随偏移距的不同,双曲面齿轮与接触应力相当的螺旋锥齿轮比较,负荷可提高至175。双曲面主动齿轮的螺旋角较大,则不产生根切的最少齿数可减少,所以可选用较少的齿数,这有利于大传动比传动。当要求传动比大而轮廓尺寸又有限时,采用双曲面齿轮更为合理。因为如果保持两种传动的主动齿轮直径一样,则双曲面从动齿轮的直径比螺旋锥齿轮的要小,这对于主减速比i4.5的传动有其优越性。当传动比小于2时,双曲面主动齿轮相对于螺旋锥齿轮主动齿轮就显得过大,这时选用螺旋锥齿轮更合理,因为后者具有较大的差速器可利用空间。由于双曲面主动齿轮螺旋角的增大,还导致其进入啮合的平均齿数要比螺旋锥齿轮相应的齿数多,因而双曲面齿轮传动比螺旋锥齿轮传动工作得更加平稳、无噪声,强度也高。双曲面齿轮的偏移距还给汽车的总布置带来方便。(3)圆柱齿轮传动一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿车驱动桥,在此不采用。(4)蜗杆传动与锥齿传动相比,蜗杆传动有如下优点:在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7); 在任何转速下使用均能工作得非常平稳且无噪声; 便于汽车的总布置及贯通式多桥驱动的布置; 能传递大的载荷,使用寿命长。但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。在此不采用。像圆柱齿轮传动只在节点处一对齿廓表面为纯滚动接触而在其他啮合点还伴随着沿齿廓的滑动一样,螺旋锥齿轮与双曲面齿轮传动都有这种沿齿廓方向的滑动。此外,双曲面齿轮传动还具有沿齿长方向的纵向滑动。这种滑动促使齿轮副沿整个齿面都能较好地啮合,因而更促使其工作平稳和无噪声。但双曲面齿轮的纵向滑动产生较多的热量,使接触点的温度升高,因而需要用专门的双曲面齿乾油来润滑,且其传动效率比螺旋锥齿轮略低,达96。其传动效率与倔移距有关,特别是与所传递的负荷大小及传动比有关。负荷大时效率高。螺旋锥齿轮也是一样,其效率可达99。两种齿轮在载荷作用下对安装误差的敏感性本质上是相同的。如果螺旋锥齿轮的螺旋角与相应的双曲面主、从动齿轮螺旋角的平均值相同,则双曲面主动齿轮的螺旋角比螺旋锥齿轮的大,而其从动齿轮的螺旋角则比螺旋锥齿轮的小,因而双曲面主动齿轮的轴向力比螺旋锥齿轮的大,而从动齿轮的轴向力比螺旋锥齿轮的小。两种齿轮都在同样的机床上加工,加工成本基本相同。然而双曲面传动的小齿轮较大,所以刀盘刀顶距较大,因而刀刃寿命较长。 由于本车的主减速器传动比大于5,且采用双曲面齿轮可以增大离地间隙,所以不采用螺旋锥齿。综上所述各种齿轮类型的优缺点,本文设计的轻型商用车主减速器采用双曲面齿轮。2.1.3 主减速器主动锥齿轮的支承形式 在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一,现在汽车主减速器主动锥齿轮的支承型式有以下两种:(1)悬臂式 图2.4 悬臂式支承如图2.4所示,齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。支承距离b应大于2.5倍的悬臂长度a,且应比齿轮节圆直径的70%还大,另外靠近齿轮的轴径应不小于尺寸a。支承刚度除了与轴承开式、轴径大小、支承间距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。当采用一对圆锥滚子轴承支承时,为了减小悬臂长度和增大支承间的距离,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以缩短跨距,从而增强支承刚度。其特点是结构简单,支承刚度较差,用于传递转矩较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。 (2)跨置式如图2.5所示,齿轮前、后两端的轴颈均以轴承支承,故又称两端支承式。跨置式支承使支承刚度大为增加,使齿轮在载荷作用下的变形大为减小,约减小到悬臂式支承的130以下而主动锥齿轮后轴承的径向负荷比悬臂式的要减小至1/51/7。齿轮承载能力较悬臂式可提高10%左右。 图2.5 跨置式支承装载质量较大的汽车主减速器主动齿轮都是采用跨置式支承。但是跨置式支承增加了导向轴承支座,使主减速器结构复杂,成本提高。乘用车和装载质量小的商用车,常采用结构简单、质量较小、成本较低的悬臂式结构。轻型货汽车,采用结构较为简单的悬臂式支承,以降低其成本。 2.1.4 主减速器从动锥齿轮的支承形式及安置方法图2.6 从动双曲面齿轮的支承主减速器从动双曲面齿轮的支承刚度依轴承的形式、支承间的距离和载荷在支承之间的分布而定。为了增加支承刚度,支承间的距离应尽可能缩小。两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子的大端相向朝内,小端相背朝外。为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。但为了增加支承刚度,应当减小尺寸cd;为了使载荷均匀分配,应尽量使尺寸c等于或大于尺寸d。球面圆锥滚子轴承具有自动调位的性能,对轴的歪斜的敏感性较小,这一点当主减速器从动齿轮轴承的尺寸大时极为重要。向心推力轴承不需要调整,但仅见于某些小排量轿车的主减速器中。只有当采用直齿或人字齿圆柱齿轮时,由于无轴向力,双级主减速器的从动齿轮才可以安装在向心球轴承上。 综上所述,由于本车为轻型载货汽车,主减速器从动齿轮不宜采向心球轴承,应采用圆锥滚子轴承支承,并用螺栓与差速器壳突缘连结。 2.2 主减速器的基本参数选择与设计计算2.2.1 主减速比的确定主减速比i0的大小,对于主减速器的结构型式、轮廓尺寸及质量的大小影响很大。主减速比i0的选择,应在汽车总体设计时和传动系的总传动比(包括变速器、分动器和加力器、驱动桥等传动装置的传动比)一起,由汽车的整体动力计算来确定。正如传动系的总传动比及其变化范围为设计传动系组成部分的重要依据一样,驱动桥的主减速比i0是主减速器的设计依据,是设计主减速器时的原始数据。传动系的总传动比(其中包括主减速比i0),对汽车的动力性、燃料经济性有非常重大的影响,发动机的工作条件也和汽车传动系的传动比(包括主减速比)有关。对于具有很大功率储备的轿车、客车、长途公共汽车,尤其是对竞赛汽车来说,在给定发动机最大功率的情况下,所选择的i0值应能保证这些汽车有尽可能高的最高车速。这时值应按下式来确定: =0.377 (2.1)式中:车轮的滚动半径 ,在此选用轮胎型号为7.50-16,滚动半径为 0.394m; 最大功率时发动机转速, ; 汽车的最高车速, ; 变速器最高档传动比,通常为1 。对于其他汽车来说,为了用稍微降低最高车速的办法来得到足够的功率储备,主减速比一般应选得比按式(2.1)求得的要大10%25%,即按下式选择: =(0.3770.472) (2.2)式中:变速器最高档(直接档或超速档)传动比; 分动器或加力器高档传动比; 轮边减速传动比。将已给出的数据代入(2.2):=(0.3770.472) =5.446.8 所求的值应与同类汽车的主减速比比较,并考虑到主、从动主减速齿轮有可能的齿数,对值予以校正并最终确定=5.3 2.2.2 主减速器计算载荷的确定(1)按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩 (2.3)式中 : 变速器一挡传动比,在此取4.3,此数据参考同类车型; 主减速器传动比在此取5.3;发动机的输出的最大转矩,在此取300,此数据参考同类车型;由于猛结合离合器而产生冲击载荷时的超载系数,对于一般的载货汽车,矿用汽车和越野汽车以及液力传动及自动变速器的各类汽车取=1.0,当性能系数>0时可取=2.0;汽车满载时的总质量在此取5455 ;该汽车的驱动桥数目在此取1;传动系上传动部分的传动效率,在此取0.9。根据以上参数可以由(2.3)得:=6211(2)按驱动轮打滑转矩确定从动锥齿轮的计算转矩 (2.4)式中:汽车满载时一个驱动桥给水平地面的最大负荷,在此取32550N,此数据参考同类车型; 轮胎对路面的附着系数,对于安装一般轮胎的公路用汽车,可以取=0.85;对越野汽车取=1.0;对于安装专门的肪滑宽轮胎的高级轿车取=1.25;在此取=0.85;车轮的滚动半径,在此选用轮胎型号为7.50-16,则有其滚动半径为0.394m; ,分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,取0.9,由于没有轮边减速器取1.0。所以由公式(2.4)得:=12112(3)按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续的转矩根据所谓的平均牵引力的值来确定: (2.5)式中:汽车满载时的总重量,在此取54550N;所牵引的挂车满载时总重量,N,但仅用于牵引车的计算;道路滚动阻力系数,对于载货汽车可取0.0150.020;在此取0.018; 汽车正常行驶时的平均爬坡能力系数,对于载货汽车可取0.050.09在此取0.07;汽车的性能系数在此取0;,分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,取0.9,由于没有轮边减速器取1.0;该汽车的驱动桥数目在此取1; 车轮的滚动半径,在此选用轮胎型号为7.50-16,则有其滚动半径为0.394m。所以由式(2.5)得: =2101.52.2.3 主减速器基本参数的选择(1)主、从动锥齿轮齿数和选择主、从动锥齿轮齿数时应考虑如下因素:为了磨合均匀,之间应避免有公约数;为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于40;为了啮合平稳,噪声小和具有高的疲劳强度对于商用车一般不小于6;主传动比较大时,尽量取得小一些,以便得到满意的离地间隙;对于不同的主传动比,和应有适宜的搭配。 (2)从动锥齿轮大端分度圆直径和端面模数对于单级主减速器,增大尺寸会影响驱动桥壳的离地间隙,减小又会影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。可根据经验公式初选,即 (2.6)式中:直径系数,一般取13.016.0;从动锥齿轮的计算转矩,为和中的较小者取其值为6221;由式(2.6)得: =(13.016.0)=(239.09294.27);初选=260 则齿轮端面模数=/=260/35=7.43=357.43=260.05(3)主,从动齿轮齿面宽的选择齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面过窄及刀尖圆角过小,这样不但会减小了齿根圆角半径,加大了集中应力,还降低了刀具的使用寿命。此外,安装时有位置偏差或由于制造、热处理变形等原因使齿轮工作时载荷集中于轮齿小端会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间减小。但齿面过窄,轮齿表面的耐磨性和轮齿的强度会降低。 另外,由于双曲面齿轮的几何特性,双曲面小齿轮齿面宽比大齿轮齿面宽要大。一般取大齿轮齿面宽=0.155=0.155260.05=38.09mm,小齿轮齿面宽=1.1=1.138.09=41.90mm(4)小齿轮偏移距及偏移方向的选择载货汽车主减速器的E值,不应超过从从动齿轮节锥距的20%(或取E值为d的10%12%,且一般不超过12%)。传动比愈大则E值也应愈大,大传动比的双曲面齿轮传动,偏移距E可达从动齿轮节圆直径的2030。但当E大干的20时,应检查是否存在根切。E=(0.10.12) =(0.10.12)260.05=26.0131.20mm初选E=30mm双曲面齿轮的偏移可分为上偏移和下偏移两种,如图2.7所示:由从动齿轮的锥顶向其齿面看去并使主动齿轮处于右侧,这时如果主动齿轮在从动齿轮中心线上方时,则为上偏移,在下方时则为下偏移。其中a、b是下偏移,c、d是上偏移。双曲面齿轮的偏移方向与其轮齿的螺旋方向间有一定的关系:下偏移时主动齿轮的螺旋方向为左旋,从动齿轮为右旋;上偏移时主动齿轮为右旋,从动齿轮为左旋。本减速器采用下偏移。 (a) (b) (c) (d)图2.7 双曲面齿轮的偏移方式(5)螺旋角的选择双曲面齿轮螺旋角是沿节锥齿线变化的,轮齿大端的螺旋角最大,轮齿小端螺旋角最小,齿面宽中点处的螺旋角称为齿轮中点螺旋角。螺旋锥齿轮中点处的螺旋角是相等的。二对于双曲面齿轮传动,由于主动齿轮相对于从动齿轮有了偏移距,使主动齿轮和从动齿轮中点处的螺旋角不相等。且主动齿轮的螺旋角大,从动齿轮的螺旋角小。 选时应考虑它对齿面重合度,轮齿强度和轴向力大小的影响,越大,则也越大,同时啮合的齿越多,传动越平稳,噪声越低,而且轮齿的强度越高,应不小于1.25,在1.52.0时效果最好,但过大,会导致轴向力增大。 汽车主减速器双曲面齿轮大小齿轮中点处的平均螺旋角多为35°40°。主动齿轮中点处的螺旋角可按下式初选:=+ (2.7)式中:主动轮中点处的螺旋角,mm;,主、从动轮齿数;分别为8,35;双曲面齿轮偏移距, 30mm;从动轮节圆直径,260.05mm;由式(2.7)得:=+=45.84从动齿轮中点螺旋角可按下式初选:双曲面齿轮传动偏移角的近似值;双曲面从动齿轮齿面宽为38.09mm;=-=45.84°-=34.23°、从动齿轮和主动齿轮中点处的螺旋角。平均螺旋角=40.04°。(6)螺旋方向的选择主、从动锥齿轮的螺旋方向是相反的。如图2.8所示,螺旋方向与双曲面齿轮的旋转方向影响其所受的轴向力的方向,当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有分离的趋势,防止轮齿因卡死而损坏。所以主动锥齿轮选择为左旋,从锥顶看为逆时针运动,这样从动锥齿轮为右旋,从锥顶看为顺时针,驱动汽车前进。图2.8 双曲面齿轮的螺旋方向及轴向推力(7)法向压力角 加大压力角可以提高齿轮的强度,减少齿轮不产生根切的最小齿数,但对于尺寸小的齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,对于双曲面齿轮,由于其主动齿轮轮齿两侧的法向压力角不等,因此应按平均压力角考虑,载货汽车选用22°30或20°的平均压力角,在此选用20°的平均压力角。2.2.4 主减速器双曲面齿轮的几何尺寸计算(1)大齿轮齿顶角与齿根角图2.9 收缩齿两种形式标准收缩齿(a)和双重收缩齿(b)各有其优缺点,采用哪种收缩齿应按具体情况而定。双重收缩齿的优点在于能提高小齿轮粗切工序的效率。双重收缩齿的轮齿参数,其大、小齿轮根锥角的选定是考虑到用一把使用上最大的刀顶距的粗切刀,切出沿齿面宽方向正确的齿厚收缩来。当大齿轮直径大于刀盘半径时采用这种方法是最好的,不是这种情况而要采用双重收缩齿,齿高的急剧收缩将使小端的齿轮又短又粗。标准收缩齿在齿高方向的收缩好,但可能使齿厚收缩过多,结果造成小齿轮粗切刀的刀顶距太小。这种情况可用倾锥根母线收缩齿的方法或仔细选用刀盘半径加以改善,即当双重收缩齿会使齿高方向收缩过多,而标准收缩齿会使齿厚收缩过多时,可采用倾锥根母线收缩齿作为两者之间的这种。大齿轮齿顶角和齿根角为了得到良好的收缩齿,应按下述计算选择应采用采用双重收缩齿还是倾锥根母线收缩齿。用标准收缩齿公式来计算及 (2.8) (2.9) (2.10) (2.11) (2.12) (2.13) (2.14) (2.15) (2.16)由(2.12)与(2.13)联立可得: (2.17) (2.18) (2.19) (2.20) (2.21)式中: ,小齿轮和大齿轮的齿数;大齿轮的最大分度圆直径,已算出为260.05mm;大齿轮在齿面宽中点处的分度圆半径;在节锥平面内大齿轮齿面宽中点锥距mm;大齿轮齿面宽中点处的齿工作高;大齿轮齿顶高系数取0.15;大齿轮齿宽中点处的齿顶高;大齿轮齿宽中点处的齿跟高;大齿轮齿面宽中点处的螺旋角;大齿轮的节锥角;齿深系数取3.7;

    注意事项

    本文(车辆工程毕业设计(论文)轻型商用车主减速器设计【全套图纸】.doc)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开