欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    matlab《数字图像处理》第8章 傅立叶变换.ppt

    • 资源ID:2973726       资源大小:2.96MB        全文页数:77页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    matlab《数字图像处理》第8章 傅立叶变换.ppt

    第8章 图像傅立叶 变换,2,学习重点,二维傅立叶变换的定义 二维傅立叶变换的性质二维傅立叶变换matlab实现,3,学习内容,8.1 一维傅立叶变换8.2 二维傅立叶变换 8.3 傅立叶变换的性质 8.4 matlab傅立叶变换的实现8.5 傅立叶变换的应用简介,4,为什么要在频率域研究图像增强,可以利用频率成分和图像外表之间的对应关系。一些在空间域表达困难的增强任务,在频率域中变得非常普通。滤波在频率域更为直观,它可以解释空间域滤波的某些性质给出一个问题,寻找某个滤波器解决该问题,频率域处理对于试验、迅速而全面地控制滤波器参数是一个理想工具,5,为什么要在频率域研究图像增强,可以在频域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导一旦通过频域试验选择了空间滤波,通常实施都在空间域进行一旦找到一个特殊应用的滤波器,通常在空间域采用硬件实现它,6,法国数学家傅立叶(生于1768年)在1822年出版的热分析理论一书中指出:任何周期函数都可以表达为不同频率的正弦和或余弦和的形式,即傅立叶级数。20世纪50年代后期,快速傅立叶变换算法出现,得到了广泛的应用。,8.1 一维傅立叶变换,7,8,1)一维连续函数的傅立叶变换(FT),定义:若函数满足狄里赫利(Dirichlet)条件:1)具有有限个间断点;2)具有有限个极值点;3)绝对可积,则下列变换成立:,傅立叶正变换:,傅立叶反变换:,8.1 一维傅立叶变换,9,如果,为实函数,傅立叶变换用复数表示:,用指数形式表示:,傅立叶谱:,相角:,能量谱:,10,离散函数f(x)(其中x,u=0,1,2,M-1)的傅 立叶变换:,F(u)的反变换:,计算F(u):1)在指数项中代入u=0,然后将所有x 值相加2)u=1,复对所有x 的相加;3)对所有M 个u 重复此过程,得到完整的FT。,2)一维离散傅立叶变换(DFT),11,离散傅里叶变换及其反变换总存在。用欧拉公式得,每个F(u)由f(x)与对应频率的正弦和余弦乘积和组成;,u 值决定了变换的频率成份,因此,F(u)覆盖的域(u值)称为频率域,其中每一项都被称为FT 的频率分量。与f(x)的“时间域”和“时间成份”相对应。,12,傅里叶变换将信号分成不同频率成份。类似光学中的分色棱镜把白光按波长(频率)分成不同颜色,称数学棱镜。傅里叶变换的成份:直流分量和交流分量,13,傅立叶变换在极坐标下表示:,频率谱,相位谱,功率谱,14,f(x)是一门函数,如图所示,它表示为:,求其傅立叶变换F(u),15,解:,16,对应的傅立叶谱为:,17,简单函数的傅里叶谱M 点离散函数及其傅里叶频谱(M=1024,A=1,K=8);对应的傅里叶频谱,曲线下面积:当x 域加倍时,频率谱的高度也加倍;当函数长度加倍时,相同间隔下频谱中零点的数量也加倍。,18,8.2 二维傅立叶变换,1)二维连续函数傅立叶变换(2DFT),定义:若f(x,y)是连续图像函数,反变换:,正变换:,变换对:,19,幅度谱、相位谱、能量谱,一般F(u,v)是复函数,即:,幅度谱:,相位谱:,能量谱:,20,定义:若f(x,y)是离散图像函数,为MN维大小(通常M=N),则其傅立叶变换为:,正变换:,反变换:,2)二维离散傅立叶变换,21,1)可分离性:正反变换都具有分离性,8.3 二维傅立叶变换的性质,22,1)可分离性:正反变换都具有分离性,利用二维傅立叶变换的可分离性,可将二维DFT转化 成一维DFT计算。即,先在x(或y)方向进行一维DFT,再在y(或x)方向进行一维DFT,23,2)平移性,公式(1):,24,2)平移性:,公式(2):,25,2)平移性:,26,3)分配律:,27,3)尺度变换(缩放):,28,5)旋转性,则:,此式含义是:当原图像旋转某一角度时,FT后的图像也旋转同一角度。,29,旋转性举例:,原图像及其傅立叶幅度谱图像,原图像旋转45,其幅度谱图像也旋转45,30,6)周期性和共轭对称性,31,6)周期性和共轭对称性,32,7)平均值,33,7)平均值,34,8)卷积定理,则:,35,9)相关定理,则:,36,卷积和相关理论总结:,卷积是空间域滤波和频率域滤波之间的纽带。,37,相关性匹配举例,延拓图像f(x,y),相关函数图像,离散傅立叶变换应用中的问题1)频谱的图像显示 谱图像就是把|F(u,v)|作为亮度显示在屏幕上。由于在傅立叶变换中F(u,v)随u,v衰减太快,直接显示高频项只能看到一两个峰,其余都不清楚。为了符合图像处理中常用图像来显示结果的惯例,通常用D(u,v)来代替,以弥补只显示|F(u,v)|不够清楚这一缺陷。D(u,v)定义为:,39,下图给出了一维傅立叶变换原频谱|F(u)|图形和D(u)图形的差别。原|F(u)|图形只有中间几个峰可见,图(b)为处理后D(u)的图形。,2)频谱的频域移中 常用的傅里叶正反变换公式都是以零点为中心的公式,其结果中心最亮点却在图像的左上角,作为周期性函数其中心最亮点将分布在四角,这和我们正常的习惯不同,因此,需要把这个图像的零点移到显示的中心。例如把F(u,v)的原零点从左上角移到显示屏的中心。,41,当周期为N时,应在频域移动N2。利用傅立叶的频域移动的性质:当u0=v0=N/2时 在作傅立叶变换时,先把原图像f(x,y)乘以(-1)x+y,然后再进行傅立叶变换,其结果谱就是移N2的F(u,v)。其频谱图为|F(u,v)|。,42,移中性:变换后主要能量(低频分量)集中在频率平面的中心。,未移中的变换:,移中的变换:,能量集中于中心,原图像f(x,y),能量分布于四角,43,8.4 matlab傅立叶变换的实现,在matlab中,一维快速傅立叶变换函数fft调用格式如下:Y=fft(X):返回向量X的离散傅立叶变换Y=fft(X,n):返回n点的傅立叶变换Y=fft(X,dim):表示在维数dim上应用fft算法Y=fft(X,n,dim),44,快速傅里叶变换(FFT)并不是一种新的变换,它是离散傅里叶变换(DFT)的一种算法。这种方法是在分析离散傅里叶变换(DFT)中的多余运算的基础上,进而消除这些重复工作的思想指导下得到的,所以在运算中大大节省了工作量,达到了快速的目的。,45,N维傅立叶变换:Y=fftn(X)返回X的多维离散傅立叶变换,结果Y和X的大小一致。把傅立叶变换的零频率部分移到频谱的中间,使用fftshif函数,调用格式如下:Y=fftshift(X)把fft函数、fft2函数和fftn函数输出的结果的零频率部分移到数组的中间。对于向量,把X的左右部分交换,对于矩阵,把X的第一、三象限和二、四象限交换,46,8.5 傅立叶变换的应用简介,1)图像的傅立叶分析,%已知一幅30*30大小的二值图像,在图像中间有个长为5高为20的白色区域,其它区域为黑色%对这幅图进行傅立叶变换分析(主要用用FFT算法)clcclear allf=zeros(30,30);f(5:24,13:17)=1;%定义图像数组figure()imshow(f,InitialMagnification,fit);,47,F=fft2(f);%二维傅立叶变换(fft算法)figure()mesh(fftshift(abs(F);%绘制频谱图F2=fftshift(log(1+abs(F);figure()imshow(F2,-1 5,InitialMagnification,fit);%显示频谱图像,频谱的零频率系数被移到频谱中间colormap(jet);colorbar,48,%在上面的变换前的矩阵没有被填充,下面比较填充矩阵后的情况F=fft2(f,256,256);%在变换前f被用0填充成256*256的矩阵,变换后的矩阵大小也是256*256figure()imshow(fftshift(log(1+abs(F),-1 5);colormap(jet);colorbar,49,变换前的图像,傅立叶变换后的频谱图,50,未填充的傅立叶变换后频谱图像,填充后的傅立叶变换后频谱图像,51,(a)原始图像(b)离散傅里叶频谱二维图像及其离散傅里叶频谱的显示,52,图a)乘以一指数e-1,将图像亮度整体变暗,并求其中心移到零点的频谱图(a)变暗后的图(b)变暗后中心移到零点的频谱图,当图片亮度变暗后,中央低频成分变小。故从中可知,中央低频成分代表了图片的平均亮度,当图片亮度平均值发生变化时,对应的频谱图中央的低频成分也发生改变。,54,图(a)加入高斯噪声,得出一个有颗粒噪音的图,并求其中心移到零点的频谱图(a)有颗粒噪音(b)有颗粒噪音 中心移到零点的频谱图,55,%已知一幅1000*1000大小的二值图像,中间为50*300的白色区域,其它区域为黑色%下面研究这幅图像的傅立叶变换的平移特性(左右平移)clcclear allclose allf=zeros(1000,1000);f(350:649,475:524)=1;%定义图像,2)傅立叶性质(平移),56,subplot(221)imshow(f,InitialMagnification,fit);title(原始图像);subplot(222)F=fftshift(abs(fft2(f);imshow(F,-1 5,InitialMagnification,fit);title(原始图像的傅立叶变换频谱);subplot(223),57,f=zeros(1000,1000);f(350:649,800:849)=1;imshow(f,InitialMagnification,fit);title(向X轴方向移动后的图像);subplot(224)F=fftshift(abs(fft2(f);imshow(F,-1 5,InitialMagnification,fit);title(向X轴方向移动后的傅立叶变换频谱);,58,59,%已知一幅1000*1000大小的二值图像,中间为50*300的白色区域,其它区域为黑色%下面研究这幅图像的傅立叶变换的平移特性(上下平移)clcclear allclose allf=zeros(1000,1000);f(350:649,475:524)=1;%定义图像subplot(221)imshow(f,InitialMagnification,fit);title(原始图像);,上下平移,60,subplot(222)F=fftshift(abs(fft2(f);imshow(F,-1 5,InitialMagnification,fit);title(原始图像的傅立叶变换频谱);subplot(223)f=zeros(1000,1000);f(50:349,475:524)=1;imshow(f,notruesize);title(向X轴方向移动后的图像);,61,subplot(224)F=fftshift(abs(fft2(f);imshow(F,-1 5,notruesize);title(向X轴方向移动后的傅立叶变换频谱);,62,63,%已知一幅1000*1000大小的二值图像,中间为50*300的白色区域,其它区域为黑色%下面以这幅图像为例来研究傅立叶变换的旋转特性clcclear allclose allf=zeros(1000,1000);f(350:649,475:524)=1;%定义图像subplot(221)imshow(f,notruesize);title(原始图像);,3)傅立叶性质(旋转):,64,subplot(222)F=fftshift(abs(fft2(f);imshow(F,-1 5,InitialMagnification,fit);title(原始图像的傅立叶变换频谱);subplot(223)f=zeros(1000,1000);f(350:649,475:524)=1;f=imrotate(f,45,bilinear,crop);%以图像中心为将原点旋转45度imshow(f,notruesize);title(图像正向旋转45度);,65,subplot(224)F=fftshift(abs(fft2(f);imshow(F,-1 5,InitialMagnification,fit);title(图像正向旋转45度的傅立叶变换频谱);,66,67,4)比例尺度展宽,(a)原始图像,(b)比例尺度展宽前的频谱,(c)比例尺度a=0.1,b=1,展宽后的频谱,68,%模块匹配实例%傅立叶变换可以应用于图像中定位目标图,也叫做模式匹配。%通常做法是:将图像和旋转90度后的模式图像(定位目标图)%做相关运算,然后对结果取一定的阈值clcclear allclose allbw=imread(text.png);a=bw(32:45,88:98);%从图像中提取字码“a”,5)傅立叶性质(相关)模板匹配,69,subplot(221),imshow(bw);subplot(222),imshow(a)C=real(ifft2(fft2(bw).*fft2(rot90(a,2),256,256);%图像和定位模块图像旋转90度的傅立叶变换后做点乘运算,再返回空间域%也就是相当于相关运算subplot(223),imshow(C,)max(C(:),70,%寻找矩阵C的最大值thresh=60;%根据最大值确定阈值60subplot(224),imshow(Cthresh)%显示大于阈值的像素点,71,对一副图片求其幅值谱和相位谱,并对幅值谱和相位谱分别进行图像构,对比其所求结果。(a)原图,6)傅立叶的幅度谱和相位谱,(b)幅值谱(c)相位谱(d)幅值谱重构图像(e)相位谱重构图像图4.12傅里叶图像及其傅里叶变换,对图(a)进行离散傅里叶变换,得出幅值谱图(b),相位谱图(d)及幅值谱重构图像图(c),相位谱重构图图(e)。从实验结果可以看出,从幅值谱图像中得到的信息比在相位谱图像中得到的信息多,但对幅值谱图像重构后,即忽略相位信息,将其设为0,所得到的图像与原始图像相比,结果差别很大;而对相位谱图像重构后,及忽略幅值信息,将其设为常数,可以从中看出图像的基本轮廓来。,75,8)傅立叶其它的应用频域增强,变换域增强是首先经过某种变换(如傅里叶变换)将图像从空间域变换到变换域,然后在变换域对频谱进行操作和处理,再将其反变换到空间域,从而得到增强后的图像。在变换域处理中最为关键的是变换处理。在图像增强处理中,最常用的正交变换是傅里叶变换。当采用傅里叶变换进行增强时,把这种变换域增强称为频域增强。,低通滤波 图像从空间域变换到频率域后,其低频分量对应图像中灰度值变化比较缓慢的区域,高频分量则表征图像中物体的边缘和随机噪声等信息。高通滤波 图像的边缘、细节主要在高频,图像模糊是由于高频成分较弱产生的。为了消除模糊,突出边缘,可以采用高通滤波的方法,使低频分量得到抑制,从而达到增强高频分量,使图像的边沿或线条变得清晰,实现图像的锐化,77,8.6 小结,一维傅立叶变换 二维傅立叶变换 通过matlab图像处理加强对傅立叶性质的掌握 了解傅立叶变换的应用,

    注意事项

    本文(matlab《数字图像处理》第8章 傅立叶变换.ppt)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开