单柱液压机液压系统设计.doc
毕 业 设 计(论文)题目 25KN单柱液压机液压系统设计专 业: 学 生 姓 名: 班 级: 学 号: 指 导 教 师: 完 成 时 间: 前 言近10年来,液压传动在防漏、治污、降噪、减震、节能和材质研究等各个方面都有长足的进步,它和电子技术的结合也由拼装、混和到整合,步步深入。时至今日,在尽可能小的空间内付出尽可能大的功率并加以精确控制这一点上,液压传动已稳居各种传动方式之首,无可替代。这种情况使液压传动的元件类型、油路结构、系统设计和制作工艺等都发生了深刻的变化,也改变了人们对它进行认识、分析和综合的方式方法。本文所提出的课题正是液压技术在锻压机械中的一个典型应用单柱液压机的液压系统的设计计算。作者利用在南昌市飞机制造厂实习之便,进行了有关资料的收集和整理。尽量在设计过程中选用新标准以反映这门技术的最新情况。为方便读者,作者在设计的说明和排版方面都进行了反复斟酌,采取慎重的态度。本书由尚林峰编写,李尧忠参加审定。由于时间和水平的限制,难免存在不少的缺点和错误,恳切希望广大读者批评指正。 编 者 2003年6月目 录主要符号表1 概述1§1.1 液压传动发展概况1§1.2 液压传动的工作原理及其组成部分11.2.1液压传动的工作原理11.2.2液压传动的组成部分2§1.3 液压传动的优缺点32 液压系统设计 5§2.1 明确设计要求,制定基本方案52.1.1设计要求52.1.2制定液压系统基本方案5§2.2 液压系统各液压元件的确定62.2.1液压介质的选择62.2.2拟定液压系统图7§2.3 液压系统主要参数计算92.3.1选系统工作压力92.3.2液压缸主要参数的确定 92.3.3液压缸强度校核102.3.4液压缸稳定性校核122.3.5计算液压缸实际所需流量152.3.6绘制液压缸工况图15§2.4 液压阀的选择162.4.1 液压阀的作用162.4.2 液压阀的基本要求162.4.3 液压阀的选择163 液压泵站及其辅助装置18§3.1液压泵站183.1.1 液压泵站概述及液压泵站油箱容量系列标准183.1.2 各系列液压泵站的简述19§3.2 液压泵203.2.1 液压泵的选择203.2.2 液压泵装置21§3.3 电动机功率的确定22§3.4 液压管件的确定233.4.1油管内径确定233.4.2 管接头23§3.5 滤油器的选择 233.5.1 滤油器的作用及过滤精度233.5.2 选用和安装24§3.6 油箱及其辅件的确定243.6.1 油箱243.6.2 空气滤清器263.6.3 油标274 液压缸的设计计算28§4.1液压缸的基本参数的确定28§4.2 液压缸主要零件的结构、材料及技术要求284.2.1 缸体28§4.3 缸盖314.3.1 缸盖的材料314.3.2 缸盖的技术要求31§4.4 活塞314.4.1 活塞与活塞杆的联接型式314.4.2 活塞与缸体的密封324.4.3活塞的材料324.4.4 活塞的技术要求32§4.5 活塞杆334.5.1 端部结构334.5.2 端部尺寸334.5.3 活塞杆结构344.5.4 活塞杆材料354.5.5 活塞杆的技术要求35§4.6 活塞杆的导向、密封和防尘354.6.1 导向套354.6.2 杆的密封与防尘36§4.7 液压缸的缓冲装置36§4.8 液压缸的排气装置36§4.9 液压缸安装联接部分的型式374.9.1 液压缸进出油口的联接374.9.2 液压缸的安装方式375 结论38致谢39参考文献40附录A41附录B53如有需要请加QQ303015173我们将至诚为您服务1、概述1.1 液压传动发展概况液压传动相对于机械传动来说是一门新技术,但如从17世纪中叶巴斯卡提出静压传递原理、18世纪末英国制成世界上第一台水压机算起,也已有二三百年历史了。近代液压传动在工业上的真正推广使用只是本世纪中叶以后的事,至于它和微电子技术密切结合,得以在尽可能小的空间内传递出尽可能大的功率并加以精确控制,更是近10年内出现的新事物。本世纪的60年代后,原子能技术、空间技术、计算机技术(微电子技术)等的发展再次将液压技术推向前进,使它发展成为包括传动、控制、检测在内的一门完整的自动化技术,使它在国民经济的各方面都得到了应用。液压传动在某些领域内甚至已占有压倒性的优势,例如,国外今日生产的95%的工程机械、90%的数控加工中心、95%以上的自动线都采用了液压传动。因此采用液压传动的程度现在已成为衡量一个国家工业水平的重要标志之一。当前,液压技术在实现高压、高速、大功率、高效率、低噪声、经久耐用、高度集成化等各项要求方面都取得了重大的进展,在完善比例控制、数字控制等技术上也有许多新成就。此外,在液压元件和液压系统的计算机辅助设计、计算机仿真和优化以及微机控制等开发性工作方面,更日益显示出显著的成绩。我国的液压工业开始于本世纪50年代,其产品最初只用于机床和锻压设备,后来才用到拖拉机和工程机械上。自1964年从国外引进一些液压元件生产技术、同时进行自行设计液压产品以来,我国的液压件生产已从低压到高压形成系列,并在各种机械设备上得到了广泛的使用。80年代起更加速了对西方先进液压产品和技术的有计划引进、消化、吸收和国产化工作,以确保我国的液压技术能在产品质量、经济效益、人才培训、研究开发等各个方面全方位地赶上世界水平。1.2 液压传动的工作原理及组成部分1.2.1 液压传动的工作原理 驱动机床工作台的液压系统,它由油箱、滤油器、液压泵、溢流阀、开停阀、节流阀、换向阀、液压缸以及连接这些元件的油管组成。它的工作原理:液压泵由电动机带动旋转后,从油箱中吸油。油液经滤油器进入液压泵,当它从泵中输出进入压力管后,将换向阀手柄、开停手柄方向往内的状态下,通过开停阀、节流阀、换向阀进入液压缸左腔,推动活塞和工作台向右移动。这时,液压缸右腔的油经换向阀和回油管排回油箱。如果将换向阀手柄方向转换成往外的状态下,则压力管中的油将经过开停阀、节流阀和换向阀进入液压缸右腔,推动活塞和工作台向左移动,并使液压缸左腔的油经换向阀和回油管排回油管。工作台的移动速度是由节流阀来调节的。当节流阀开大时,进入液压缸的油液增多,工作台的移动速度增大;当节流阀关小时,工作台的移动速度减小。为了克服移动工作台时所受到的各种阻力,液压缸必须产生一个足够大的推力,这个推力是由液压缸中的油液压力产生的。要克服的阻力越大,缸中的油液压力越高;反之压力就越低。输入液压缸的油液是通过节流阀调节的,液压泵输出的多余的油液须经溢流阀和回油管排回油箱,这只有在压力支管中的油液压力对溢流阀钢球的作用力等于或略大于溢流阀中弹簧的预紧力时,油液才能顶开溢流阀中的钢球流回油箱。所以,在系统中液压泵出口处的油液压力是由溢流阀决定的,它和缸中的油液压力不一样大。如果将开停手柄方向转换成往外的状态下,压力管中的油液将经开停阀和回油管排回油箱,不输到液压缸中去,这时工作台就停止运动。从上面的例子中可以得到:1) 动是以液体作为工作介质来传递动力的。2)液压传动用液体的压力能来传递动力,它与利用液体动能的液力传动是不相同的。3)压传动中的工作介质是在受控制、受调节的状态下进行工作的,因此液压传动和液压控制常常难以截然分开。1.2.2 液压传动的组成部分液压传动装置主要由以下四部分组成:1)能源装置把机械能转换成油液液压能的装置。最常见的形式就是液压泵,它给液压系统提供压力油。2)执行装置把油液的液压能转换成机械能的装置。它可以是作直线运动的液压缸,也可以是作回转运动的液压马达。3)制调节装置对系统中油液压力、流量或流动方向进行控制或调节的装置。例如溢流阀、节流阀、换向阀、开停阀等。这些元件的不同组合形成了不同功能的液压系统。4)辅助装置上述三部分以外的其它装置,例如油箱、滤油器、油管等。它们对保证系统正常工作也有重要作用。1.3 液压传动的优缺点液压传动有以下一些优点:1) 在同等的体积下,液压装置能比电气装置产生出更多的动力,因为液压系统中的压力可以比电枢磁场中的磁力大出3040倍。在同等的功率下,液压装置的体积小,重量轻,结构紧凑。液压马达的体积和重量只有同等功率电动机的12%左右。2) 液压装置工作比较平稳。由于重量轻、惯性小、反应快,液压装置易于实现快速启动、制动和频繁的换向。液压装置的换向频率,在实现往复回转运动时可达500次/min,实现往复直线运动时可达1000次/min。3) 液压装置能在大范围内实现无级调速(调速范围可达2000),它还可以在运行的过程中进行调速。4) 液压传动易于自动化,这是因为它对液体压力、流量或流动方向易于进行调节或控制的缘故。当将液压控制和电气控制、电子控制或气动控制结合起来使用时,整个传动装置能实现很复杂的顺序动作,接受远程控制。5) 液压装置易于实现过载保护。液压缸和液压马达都能长期在失速状态下工作而不会过热,这是电气传动装置和机械传动装置无法办到的。液压件能自行润滑,使用寿命较长。6) 由于液压元件已实现了标准化、系列化和通用化,液压系统的设计、制造和使用都比较方便。液压元件的排列布置也具有较大的机动性。7) 用液压传动来实现直线运动远比用机械传动简单。液压传动的缺点是:1) 液压传动不能保证严格的传动化,这是由液压油液的可压缩性和泄漏等原因造成的。2) 液压传动在工作过程中常有较多的能量损失(摩擦损失、泄漏损失等),长距离传动时更是如此。3) 液压传动对油温变化比较敏感,它的工作稳定性很易受到温度的影响,因此它不宜在很高或很低的温度条件下工作。4) 为了减少泄漏,液压元件在制造精度上的要求较高,因此它的造价较贵,而且对油液的污染比较敏感。5) 液压传动要求有单独的能源。6) 液压传动出现故障时不易找出原因。总的说来,液压传动的优点是突出的,它的一些缺点有的现已大为改善,有的将随着科学技术的发展而进一步得到克服。2、液压系统设计2.1 明确设计要求,制定基本方案2.1.1 设计要求设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手进行液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面的情况了解清楚。单柱液压机主机概况:液压机公称力 25 KN液压系统最大工作压力 8 Mpa骨块行程 125 MM压头下行速度 45 mm/s压头上行速度 130 mm/s 液压系统要完成以下动作循环:2.1.2 制定液压系统基本方案2.1.2.1 确定液压执行元件的形式在本设计中,液压缸是液压系统中的执行元件,它是一种把液体的压力能转换成机械能以实现直线往复运动的能量转换装置。液压缸结构简单,工作可靠,在液压系统中得到了广泛的应用。液压缸按其结构形式,可以分为活塞缸、柱塞缸两类。活塞缸和柱塞缸的输入为压力和流量,输出为推力和速度。液压缸除了单个地使用外,还可以组合起来或和其它机构相结合,以实现特殊的功能。根据参考文献2表37.5-1我们选择活塞缸类中的单杆活塞液压缸,其特点及适用场合见表2-1。表2-1名称特点适用场合单杆活塞液压缸有效工作面积大,双向不对称往返不对称的直线运动等2.1.2.2 确定液压执行元件运动控制回路1)为了实现液压缸的进和退,我们选择电磁换向阀作为液压系统的方向控制阀。电磁换向阀的基本工作原理是通过电磁铁控制滑阀阀芯的不同位置,以改变油液的流动方向。当电磁铁断电时,滑阀由弹簧保持在中间位置或初始位置(脉冲式阀除外)。若推动故障检查按钮可使滑阀阀芯移动。电磁换向阀在液压系统中的作用是用来实现液压油路的换向、顺序动作及卸荷等。由于电磁铁的推力有限,电磁换向阀应用在流量不大的液压系统中。2)为了实现其工进,可以选择调速阀或节流阀作为速度控制阀。节流阀的调节应该轻便、准确。在小流量调节时,如通流截面相对于阀心位移的变化率较小,则调节的精确性较高。调节节流阀的开口,便可调节执行元件运动速度的大小。而调速阀的工作原理:液压泵出口(即调速阀进口)压力,由溢流阀调整,基本上保持恒定。调速阀出口处的压力由活塞上的负载决定。所以当负载增大时,调速阀进出口压差将将减小。调速阀在液压系统中的应用和节流阀相仿,它适用于执行元件负载变化大而运动速度要求稳定的系统中。因此,在本设计中选择调速阀作为速度控制阀。2.1.2.3 液压源系统液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。在无其它辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱, 溢流阀同时起到控制并稳定油源压力的作用。为节省能源提高效率,液压泵的供油量尽量与系统所需流量相匹配。油液的净化装置是液压源中不可缺少的。在此,我们在泵的小口装上粗滤油器。(进入系统的油液根据被保护元件的要求,通过相应的精滤油器再次过滤。为防止系统中杂质流回油箱,可在回油路上设置磁过滤器或其他型式的滤油器。根据液压设备所处环境及对温升的要求,还要考虑加热、冷却等措施。2.2 液压系统各液压元件的确定2.2.1 液压介质的选择液压介质应具有适宜的粘度和良好的粘温特性;油膜强度要高,具有较好的润滑性能;能抗氧化,稳定性好;腐蚀作用小,对涂料、密封材料等有良好的适应性;同时液压介质还应具有一定的消泡能力。选择液压介质时,除专用液压油外,首先是介质种类的选择。根据液压系统对介质是否有抗燃性的要求,决定选用矿油型液压油或抗燃型液压液。其次,应根据系统中所用液压泵的类型选用具有合适粘度的介质。最后,还应考虑使用条件等因素,如环境温度、工作压力、执行机构速度等。当工作温度在60以下,载荷较轻时,可选用机械油;工作温度超过60时,应选用汽轮机油或普通液压油。若设备在很低温度下启动时须选用低凝液压油。据参考文献2表37.3-12 中各普通液压油质量指标及应用以及本设计中单柱液压机液压系统的要求选用N32号普通液压油,其各项质量指标见表2-2。表2-2名称N32号普通液压油代号 / 原牌号YA-N32 / 20号运动粘度 mm2/s (40)28835.2运动粘度 mm2/s (50)1723粘度指数90抗氧化安定性(酸值达2mgKOH/g) h1000凝点 -10闪点(开口) 170防锈性(蒸镏水法)无锈临界载荷 N600抗泡沫性(93) ml起泡 50 / 消泡 0抗磨性(四球,DB) N800应用适用于环境温度040的各类中高压系统(适用工作压力为6.3-2.1MPa2.2.2 拟定液压系统图在这种单柱液压机上,实现了“工进 快退 停止”的动作循环(见图2-1)。可以进行冲剪、弯曲、翻边、装配、冷挤、成型等多种加工工艺。表2- 3 示此单柱液压机的动作循环表,图2-2则是这种液压机的液压系统图,其滑块的工作情况如图所示。图2-1 单柱液压机动作循环图图2-2 单柱液压机液压系统图进油路 液压泵1 电磁换向阀2(左位) 单向调速阀3 液压油缸4上腔回油路 液压油缸4下腔 单向顺序阀5 电磁换向阀2(右位) 油箱7表2-3 单柱液压机液压系统的动作循环表动作名称信号来源电磁换向阀2的工作状态滑块工进1YA通电左位快退2YA通电右位2.3 液压系统主要参数计算2.3.1 选系统工作压力压力的选择要根据载荷大小和设备类型而定。还要考虑执行元件的装配空间、经济条件及元件供应情况等的限制。在载荷一定的情况下,工作压力低,势必要加大执行元件的结构尺寸,对某些设备来说,尺寸要受到限制,从材料消耗角度看也不经济;反之,压力选得太高,对泵、缸、阀等元件的材质、密封、制造精度也要求很高,必然要提高设备成本。一般来说,对于固定的尺寸不太受限的设备,压力可以选低一些,行走机械重载设备压力要选得高一些。公称力为25KN的单柱液压机属小型液压机类型,一般情况下,载荷不会太高,参考资料2表37.5-3,初步确定系统工作压力为4MPa。2.3.2 液压缸主要参数的确定2.3.2.1 液压缸设计中应注意的的问题液压缸的设计和使用正确与否,直接影响到它的性能和易否发生故障。在这方面,经常碰到的是液压缸安装不当、活塞杆承受偏载、液压缸或活塞下垂以及活塞杆的压杆失稳等问题。所以,在设计液压缸时,必须注意如下几点:1)尽量使活塞杆在受拉状态下承受最大负载,或受压状态下具有良好的纵向稳定性。2)考虑液压缸行程终了处的制动问题和液压缸的排气问题。缸内如无缓冲装置和排气装置,系统中需有相应的措施。但是并非所有的液压缸都要考虑这些问题。3)正确确定液压缸的安装、固定方式。如承受弯曲的活塞杆不能用螺纹连接,要用止口连接。液压缸不能在两端用键或销定们,只能在一端定位,为的是不致阻碍它在受热时的膨胀。如冲击载荷使活塞杆压缩,定位件须设置在活塞杆端,如为拉伸则设置在缸盖端。4) 液压缸各部分的结构需根据推荐的结构形式和设计标准进行设计,尽可能做到结构简单、紧凑,加工、装配和维修方便。2.3.2.2 液压缸主要参数的确定鉴于液压系统的最大工作压力P1=8Mpa>7Mpa由参考文献1表5-2推荐初定d=0.7D取液压缸=0.9 则此时活塞所受推力 N 由式 (2-1)=69.45 cm2 (2-2)=9.38 cm则d= 0.7·D =6.07 cm参考文献2表37.5-8及表37.5-9对这些直径圆整成就近标准值时得: D =100 mm d =70 mm由此求得液压缸两腔的实际有效面积为: cm2 cm22.3.3 液压缸强度校核液压缸的缸筒壁厚、活塞杆直径d和缸盖处固定螺栓直径在高压系统中必须进行强度校核。 取:液压缸材料为45#钢,无缝钢管活塞杆材料45#钢2.3.3.1 壁厚强度校核根据参考文献2表37.7-64及表37.7-65选择液压缸外径为121mm即液压缸壁厚=10.5mm对于本系统: 10 为厚壁按壁筒计算: (2-3)式中,D为缸筒内径;Py为缸筒试验压力,当缸的额定压力Pn 16Mpa时,取Py=1.5 Pn ;为缸筒材料的许用应力,为材料抗拉强度,n为安全系数,一般取n = 5 。 所以:Py=1.5×4=6 Mpa (2-4)式中 N/mm2n = 5则 N/m2得 mm mm故缸体壁厚强度满足。2.3.3.2 液压缸内活塞杆直径校核 活塞杆的直径d按下式进行校核 (2-5)式中,F为活塞杆上的作用力;为活塞杆材料的许用应力, 则 :mm d故活塞杆强度满足。2.3.3.3 液压缸盖固定螺栓直径计算液压缸盖固定螺栓直径按下式计算: (2-6)式中,F为液压缸负载;Z为固定螺栓个数;K为螺纹拧紧系数;K=1.121.5,取K=1.3;MPa则:mm取 ds=10 mm2.3.4 液压缸稳定性校核活塞杆受轴向压缩负载时,它所承受的力F不能超过使它保持稳定工作所允许的临界负载Fk,以免发生纵向弯曲,破坏液压缸的正常工作。Fk的值与活塞杆材料性质、截面形状、直径和长度以及液压缸的安装方式等因素有关。活塞杆稳定性的校核依下式进行: (2-7)式中,nk为安全系数,一般取nk = 2 4,这里取nk = 4。当活塞杆的细长比 时 (2-8)当活塞杆的细长比 时,且= 20 120 时,则 (2-9)式中,l为安装长度,其值与安装方式有关,见表2-1,为活塞杆横截面最小回转半径, ;为柔性系数,其值见表2-2;为由液压缸支承方式决定的末端系数,其值见表2-4;E为活塞杆材料的弹性模量,对钢取E=2.06×1011N/M2;J为活塞杆横截面惯性矩;A为活塞杆横截面积,f为由材料强度决定的实验值,为系数,具体数值均见表2-5。表2-4 液压缸支承方式和末端系数2的值支承方式支承说明末端系数2一端自由一端固定1/4两端铰接1一端铰接一端固定2两端固定4表2-5 f、a、1的值材料f ×108 N/M21铸铁5.680锻铁2.5110软钢3.490硬钢4.985由此,根据实际设计的可得: N/M2 ; (2-10)而l125mm, 取l=175mm 则活塞杆稳定性按式:进行校核。代入数据: N而 (2-11)式中,FW为活塞所受最大推力 Pmax为系统最大压力为8Mpa 。 A1为液压缸无活塞杆腔的截面积,A1 = 78.5 cm2 FW = 8×106×7.85×10-3 = 6.28×104 N显然,FW 所以,活塞杆稳定性满足。2.3.5 计算液压缸实际所需流量根据最终确定的液压缸的结构尺寸及其运动速度或转速,计算出液压缸实际所需流量,见表2-6。表2 6 液压缸实际所需流量工况活塞下行(工进)活塞上行(快退)运动速度10-2 m/s = 4.5 = 13结构参数 10-3 m2A1 = 7.85A2 = 4.0 流量 10-4 m3/sQ1 = 3.53 Q2 = 5.21计算公式Q = A2.3.6 绘制液压缸工况图图2-3液压缸工况图2.4 液压阀的选择2.4.1 液压阀的作用液压阀是用来控制液压系统中油液的流动方向或调节其压力和流量的,因此它可以分为方向阀、压力阀和流量阀三大类。一个形状相同的阀,可以因为作用机制的不同,而具有不同的功能。压力阀和流量阀利用通流截面的节流作用控制着系统的压力和流量,而方向阀则利用通流通道的更换控制着油液的流动方向。这就是说,尽管液压阀存在着各种各样不同的类型,它们之间还是保持着一些基本共同之点。例如:1)在结构上,所有的阀都由阀体、阀心(座阀或滑阀)和驱使阀心动作的元、部件(如弹簧、电磁铁)组成。2)在工作原理上,所有阀的开口大小,阀进、出口间的压差以及流过阀的流量之间的关系都符合孔口流量公式,仅是各种阀控制的参数各不相同而已。2.4.2 液压阀的基本要求液压系统中所用的液压阀,应满足如下要求:1)动作灵敏,使用可靠,工作时冲击和振动小。2)油液流过时压力损失小。3)密封性能好。4)结构紧凑,安装、调整、使用、维护方便,通用性大。2.4.3 液压阀的选择1)阀的规格,根据系统的工作压力和实际通过该阀的最大流量,选择有定型产品的阀件。溢流阀按液压泵的最大流量选取;选择节流阀和调速阀时,要考虑最小稳定流量应满足执行机构最低稳定速度的要求。控制阀的流量一般要选得比实际通过的流量大一些,必要时也允许有20%以内的短时间过流量。2)阀的型式,按安装和操作方式选择。本系统工作压力在4MPa左右,所以液压阀均选用中压阀。所选阀的规格型号见表2-7。表2-7 25KN单柱液压机液压阀名细表名称选用规格单向调速阀AQF3-E10B电磁溢流阀YDF3-E10B-B电磁换向阀34DF30-E10B-D单向顺序阀AXF3-E10B3、液压泵站及其辅助装置 在本设计中,我们将采用集成块的联接方式来进行液压系统的装配。其集成块单元回路图见图3-1;图3-1 集成块单元回路图 3.1 液压泵站3.1.1 液压泵站概述及液压泵站油箱容量系列标准3.1.1.1 液压泵站的概述目前我国生产液压泵站的厂家很多,液压泵站的种类也繁多,但多数厂家根据用户的具体要求设计和制造,尚未完全系列化、标准化。现在只有液压泵站的油箱公称容量系列有国家标准。3.1.1.2 液压泵站油箱公称容量系列(GB 287681)表3-1 油箱容量GB 2876-81 L46.310254063100160250315400500630800100012501600200031504000500063003.1.2 各系列液压泵站的简述详细资料见参考文献237篇第10章。3.1.2.1 YZ系列液压泵站YZ系列液压泵站,油箱容量有256300L等18种规格。选用各种不同的泵,得到各种不同流量、压力的规格。外形结构上有上置式(有立式及卧式)和非上置式。 YZ系列液压泵站生产厂有:上海高行液压件厂、长沙液压件厂、南京液压件三厂等。3.1.2.2 YG型液压柜YG型液压柜规格性能为油箱容量250350L,压力6.3MPa,流量有40、63和100L/ min。上海液压件一厂生产。3.1.2.3 YZS型液压站YZS型液压泵站,油箱容量100L,压力6.3MPa,流量16L/min。常州液压件厂生产。3.1.2.4 YGC型液压柜YGC型液压柜油箱容量160L,压力6.3MPa,流量有12、25L/min,由北京椿树机械厂生产。3.1.2.5 CJZ型液压站CJZ型液压泵站油箱容量有100L与160L两种,压力为5MPa,流量为2063L/min范围。有定量泵与变量泵两种型式,成都液压元件一厂生产。3.1.2.6 YH型液压站YH型液压站油箱容量1202000L,压力为14 MPa,流量在10250L/min范围,由沈阳重型机器厂生产。3.1.2.7 SE型液压泵站SE型液压泵站油箱容量1400L,压力7 MPa,流量6.75m3/s,上海冶金设计院设计。3.1.2.8 上重型液压站上海重型机器厂液压站油箱容量1200L与2200L两种,1200L的工作压力为1.5 MPa,2200L的为5 MPa,流量均为320L/min。3.2 液压泵3.2.1 液压泵的选择液压泵是一种能量转换装置,它把驱动电机的机械能转换成输到系统中去的油液的压力能,供液压系统使用。液压泵的工作压力是指泵实际工作时的压力。液压泵的额定压力是指泵在正常工作条件下按试验标准规定的连续运转的最高压力,超过此值就是过载。液压泵的额定流量是指在正常工作条件下,按试验标准规定必须保证的流量,亦即在额定转速和额定压力下由泵输出的流量。(1)液压泵工作压力的确定 (3-1)P1是液压缸的工作压力,对于本系统: MPa 是泵到液压缸间总的管路损失。由系统图可见,从泵到液压缸之间串接有一个单向调节器速阀和一个电磁换向阀,取= 0.6MPa液压泵工作压力为:PP = 4.4 + 0.6 = 5 MPa (2) 液压泵流量的确定 (3-2)由工况图看出,系统最大流量发生在快退工况,m3/s,泄漏系数 K = 1.2,求得液压泵流量:m2/s (37.8 L/mm)选用YB1-40 型双联叶片泵。双联叶片泵是在一个泵体内安装两个双作用叶片泵,用同一个传动轴驱动。安装大小不同的单泵,可以得到两种大小不同的流量,以适应液压系统各种不同速度的要求。双作用叶片泵的工作原理是泵由转子、定子、叶片、配油盘和端盖等件所组成。定子的内表双作用叶片泵的工作原理:面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个组成,且定子和转子是同心的。叶片在转子的槽内可灵活滑动,在转子转动时的离心力以及通入叶片根部压力油的作用下,叶片顶部贴紧在定子内表面上,于是两相邻叶片、配油盘、定子和转子间便形成了一个个密封的工作腔。在转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区;在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。3.2.2 液压泵装置液压泵装置是指将电能转变为液压能所需要的设备、元件及其辅助元件。具体而言,主要指电机、联轴器、液压泵、吸油管、排油管以及吸油管口的滤油器。正确地设计尤其是正确地安装液压泵装置,是液压系统正常工作的重要保证,必须予以足够的重视。3.2.2.1 液压泵的安装方式金属切削机床的液压站,多用定量或限压式变量叶片泵。变量叶片泵仅能卧式安装,而定量叶片泵,无论是单泵还是双联泵,都可以有立式和卧式两种安装方式。齿轮泵与柱塞泵一般为卧式安装。卧式安装的液压泵,其位置又可分为上置式与非上置式两种。上置式指液压泵装置安装在油箱上,立式安装的液压泵皆为上置式。安装液压泵应注意的问题: 为了防止振动与保证液压泵的使用寿命,液压泵必须牢固地紧固在箱盖或基础上,注意经常检查连接螺钉是否松动。 调整好液压泵与电机的联轴器,使二者同心,用手拨动联轴器时不能有松紧不一致的现象。