欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    航空发动机涡轮叶片失效分析 2.doc

    • 资源ID:2931401       资源大小:20.50KB        全文页数:6页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    航空发动机涡轮叶片失效分析 2.doc

    航空发动机涡轮叶片失效分析 2 航空发动机涡轮叶片失效分析-2 2011年01月19日4.转子叶片的振动类型及其特征 转子叶片在工作状态下要承受大的离心应力载荷,如果再叠加上非正常工作情况下引起的振动交变载荷则极有可能导致叶片早起疲劳断裂失效。大部分转子叶片的疲劳断裂失效均与各种类型的振动有关。 4.1转子叶片的震动分类与基本振型 涡轮叶片在实际工作中出现振动,按振动的表现形式分,主要有强迫振动、颤振、旋转失速和随机振动四种;按照叶片振动里的来源分,有强迫振动和自激振动;按作用在叶片上的应力分有振动弯曲应力和扭转应力。 对于实际叶片振动分析,主要是自振频率、振型、振动应力和激振力的来源四个因素。在一般清快下,频率越高,振幅越小,危险性也就越小,大幅低频振动最为危险。 振型是指叶片以某阶自振频率振动时,叶片各部分的相对振动关系。典型的振型有一弯、二弯、三弯和一扭、二扭等。对于涡轮转子来说,主要是一弯和一扭振型。 4.1.1尾流激振 在发动机环形气流通道中存在障碍物,当叶片转子经过这些障碍物时,叶片所受的气动力将有所改变,会引起激振力。火焰筒出口流场分布是不均匀的,对于涡轮转子会产生类似于均布障碍物的影响也会引起激振力。 4.1.2颤振 颤振属于自激振动,叶片的振型与频率都与尾流激振大致相同,它与强迫振动不同之处在于它不伴有任何带频率的激振力。颤振的频率基本上由叶片本身的几何尺寸和材料性质所决定,因而称为“自激振动”。 颤振有亚音速失速、亚音速非失速、超音速失速、超音速非失速及堵塞颤振等。叶片自激振动时必然要从气流中吸取能量,以补偿震动的阻尼场。发生颤振的必要条件是气流攻角大于临界攻角,叶背气流分离引起升力变化,导致颤振。 颤振多发生在压气机转子叶片,而涡轮转子叶片很少见到颤振。颤振的危害性很大,可在极短时间内使叶片发生断裂失效,而且往往使一个扇形面内的多个叶片断裂。 4.1.3随机振动 随机振动在各个频率下都有激振力,这些激振力作用在叶片上,会引起叶片普遍的强迫振动,而在某几个频率下引起共振,这几个频率就是叶片的自振频率。随机振动的激振源是强大的噪声,故又将此引起的叶片疲劳成为噪声疲劳,噪声源是叶片对气流的干扰和气流燃烧。噪声越大,激振力越强,叶片受损可能性越大。 5.叶片的失效模式 分析叶片产生失效的主要原因,归纳起来主要包括:热疲劳在内的低循环疲劳。振动引起的高循环疲劳,高温长时间载荷作用下的蠕变变形和蠕变应力断裂,高温燃气冲刷腐蚀和氧化、以及外物损伤等。转子叶片的失效模式随工作条件的不同而有所不同,主要是外物损伤、变形伸长和断裂三种失效形式。 叶片的外物损伤失效主要表现为凹坑、掉块、表层剥落、弯曲变形、裂纹和折断等。其中凹坑、裂纹等损伤往往会成为腐蚀和疲劳断裂的初因。 转子叶片变形伸长失效的直接后果是叶身与机匣相磨,降低发动机的使用可靠性。其主要原因有:材料选用不当或热处理工艺不当使叶片的屈服强度偏低;叶片工作温度过高,是叶片强度降低;或者发动机超转,造成离心力过高。叶片变形失效在实际使用中出现的概率较低。判断叶片是否发生变形伸长的主要依据是检查机匣有无磨损的痕迹或检查叶片是否由于使用温度过高而发生蠕变。 转子叶片出现断裂失效的概率最高,其危害性也最大,往往是一个叶片折断而打坏其他叶片,乃至使整台发动机无法工作而危及飞行安全。除因外物撞击造成叶片瞬时过载断裂外,绝大多数是由于各种原因引起的不同类型的疲劳断裂失效。 叶片疲劳断裂失效主要是因为离心力叠加弯曲应力引起的疲劳断裂、由振动环境引起的颤振,扭转共振、弯曲振动疲劳断裂以及由环境介质以及接触状态引起的高温疲劳、微动疲劳和腐蚀损伤导致的疲劳断裂。但由于叶片工作环境的复杂性,叶片实际的疲劳断裂往往并非上述某一模式。而是多种情况的叠加。 5.1叶片的低周疲劳断裂失效 转子叶片在实际运行过程中,一般情况下不容易出现低周疲劳断裂失效,但在以下三种情况下,会出现低周疲劳断裂失效: 1.叶片危险截面上所受的正常工作应力虽低于材料的屈服强度,但当危险截面附近存在范围较大的严重区域性缺陷。在该区域中的缺陷使附近的较大区域内的盈利超过材料的屈服强度而产生大范围的塑性变形,在此情况下叶片会出现低周疲劳断裂失效。 2.由于设计考虑不周是叶片危险截面上局部区域的工作应力接近或超过材料的屈服强度,且危险截面处存在不必要的缺陷,则叶片会提前出现低周疲劳断裂失效。 3.当转子叶片出现如颤振、共振、超温等非正常情况,叶片的危险截面上的整体应力水平该于材料的屈服强度,叶片也会出现低周疲劳断裂失效。 低周疲劳断裂失效大都与设计因素有关,大多出现在叶片根部附近,典型的叶片低周疲劳断口上一般不存在明显的疲劳弧线。 5.2叶片扭转共振疲劳断裂失效 叶片扭转共振疲劳断裂失效一般为高周疲劳断裂失效。具有如下典型特征: 1.发生在扭转共振节线上的掉角; 2.叶片疲劳断口上存在的疲劳弧线清晰可见,但疲劳线条非常细密。 3.断裂一般始于叶背,向叶盆扩散,疲劳区占据大部分断裂面面积。 4.叶片的断裂均起源于电腐蚀坑或外物打伤处。 叶片扭转共振疲劳断裂有两个重要因素,一是出现扭转共振,而是叶片表面普遍存在的点腐蚀或遭受到外物打击。 5.3叶片的弯曲振动疲劳断裂失效 弯曲振动疲劳断裂失效也是叶片常见的断裂失效,且通常为高频失效,其断裂循环周次(N),对于涡轮叶片一般N在105106之间。叶片的疲劳断裂位置与弯曲振动振型密切相关。在弯曲振动引起的疲劳断裂失效中,一弯振型最为常见,且危害性大。这是因为一弯振动出现在叶片根部,振动应力值最高,离心力也大。当叶片出现一阶弯曲共振时,由于弯曲振动应力的作用,叶片有可能出现断裂疲劳失效。为防止叶片在叶身处出现疲劳断裂失效的最有效方法就是避免叶片出现一弯共振,即控制叶片的静频,同时可以考虑增加叶片的振动阻尼,有效地抑制叶片的震动。另外,可以从控制冶金材质、表面、加工工艺等方面采取措施,以提高叶片的疲劳抗力。 5.4转子叶片的高温疲劳与热损伤疲劳断裂失效 涡轮转子叶片是在高温环境下工作,承受温度交变和应力交变作用,因而有可能出现蠕变损伤和疲劳损伤。工程上将因蠕变与疲劳发生作用而导致的断裂失效称为高温疲劳断裂失效。 转子叶片出现断裂失效必须同时具备以下三个条件时,才可以判断为高温疲劳断裂失效: (1) 叶片疲劳断口的源区呈沿晶断裂特征; (2) 叶片断裂处的温度超过材料的临界蠕变温度; (3) 叶片疲劳断裂处只承受呈方波形状的离心拉伸应力,其手里水平超过临界值,即超过材料在该温度下的蠕变极限或疲劳极限。 一般情况下转子叶片很少出现高温疲劳断裂失效。但涡轮转子在实际应用中因热损伤出现的疲劳断裂失效则较为常见。发动机在使用过程中,由于非正常工况(如喘振、进气道畸变、燃油调节不良、喷油雾化不良及操作失误等)引起短时间超温而使零件受过热或过烧损伤的现象称为过热损伤。遭受热损伤的转子叶片易发生疲劳断裂。由热损伤引起的疲劳断裂基本特征如下: (1) 叶片断裂部位通常在叶片的最高温度区内,断面垂直于叶片轴线; (2) 断裂起始于叶片进气边边缘,源区断面呈深黑色,氧化严重,扩展区断面较平坦,颜色明显不如源区深,有疲劳弧线,瞬断区 (3) 等等 (4) 对沃尔沃 转子叶片出现热损伤疲劳断裂失效的原因是发动机在超过规定温度的情况下运转造成的,根据其严重程度可以分为过热超温和过烧超温。还可以根据时间长短分为短期超温和长期超温。短期朝闻是指时间在几秒钟到几分钟之内,其产生原因主要是发动机喘振,进气道畸变或操作失误等情况;长期超温时间一般在几十分钟以上,主要产生原因是由于发动机温度裕度不足,燃油雾化不良或燃油调节器故障等。 5.5转子叶片微动疲劳断裂失效 当两个零件的接触表面之间存在法向压力并做小幅值的相对滑动时,由于机械和化学的联合作用,会产生包括微动疲劳、微动磨损、微动腐蚀在内的微动损伤。微动疲劳产生微裂纹、微动磨损改变尺寸而丧失正常的配合关系,以及微动腐蚀引起的表面腐蚀损伤等都会大大降低零件的疲劳抗力。同时微动损伤部位在两零件的表面接触处,不分解很难进行有效的监控和检测。在微动过程中对微动损伤起作用的主要参数有: 1.匹配零件两接触面之间的相对滑动幅值与频率; 2.两接触面间应力大小、方向及其变化; 3.匹配零件的材料及接触表面的状态; 4.两接触面间的温度及环境。 这些参量的相互作用及影响不同,微动损伤的表现形式也不同,其中以微动疲劳损伤对构件的疲劳寿命影响最大。 由微动损伤引起的疲劳断裂失效有如下两种情况: 1.戴冠叶片的叶冠微动磨损引起叶冠之间的间隙增大,使叶片所受的振动应力、扭转应力也相应的增大,当其综合应力超过允许值时,就会在叶片的危险截面处出现疲劳断裂。 2.转子叶片与轮盘的榫头连接处,结合面之间往往存在微小的相对滑动,极易出现微动磨损伤面导致疲劳断裂失效。 由于航空发动机转子叶片与轮盘在工作过程中存在着温度滞还,叶片和轮盘连接处不能采用过盈固装的办法来减小与防治微动,因此在其连接接触面之间存在相对滑动是必然的。在这种情况下,为了防止或减小二者之间的微动损伤,一般可采取以下措施: 1.合理选材,尽量使叶片与轮盘材料的线膨胀系数相接近,或选用膨胀系数低的材料; 2.在微动表面造成残余压应力,如采用喷丸,冷滚压等措施; 3.在微动接触面上镀银或涂以干膜润滑等; 4.根据材料的线膨胀系数,正确控制装配间隙。 5.6叶片腐蚀损伤疲劳断裂失效 涡轮转子叶片在环境中,往往易遭受化学或电化学腐蚀损伤,其主要损伤形式有点腐蚀、应力腐蚀、晶间腐蚀、剥蚀和高温腐蚀等。如果转子叶片表面遭受上述形式的腐蚀损伤正好处在叶片的最大应力部位,则疲劳裂纹往往会在这些损伤处萌生,从而大大降低叶片材料的疲劳强度。涡轮叶片的高温腐蚀损伤主要有高温氧化、热腐蚀、碳化和烧蚀等。

    注意事项

    本文(航空发动机涡轮叶片失效分析 2.doc)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开