抚顺中考数学试题及答案(word).doc
2011抚顺中考数学试题及答案 考试时间:150分钟 试卷满分:150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分)题号12345678答案 1.-的绝对值等于A.- B. C. D.42.下列汉字中,属于中心对称图形的是 A B C D 3.数据0,1,2,2,4,4,8的众数是A.2和4 B.3 C.4 D.24.下列说法正确的是A.为了检测一批电池使用时间的长短,应该采用全面调查的方法;B.方差反映了一组数据的波动大小,方差越大,波动越大; C.打开电视一定有新闻节目;D.为了解某校学生的身高情况,从八年级学生中随机抽取50名学生的身高情况作为总体的一个样本. 5.有一个圆柱形笔筒如图放置,它的左视图是 A B C D 6.在数据1,-1,4,-4中任选两个数据,均是一元二次方程x-3x-4=0的根的概率是 A. B. C. D.7.如图所示,点A是双曲线 y=(x0)上的一动点,过A作ACy轴,垂足为点C,作AC的垂直平分线双曲线于点B,交x轴于点D.当点A在双曲线上从左到右运动时,四边形ABCD的面积 A.逐渐变小 B.由大变小再由小变大 C.由小变大再有大变小 D.不变8.如图所示,在完全重合放置的两张矩形纸片ABCD中,AB="4",BC="8",将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分的面积为 A. B. 6 C. D. (第7题图)(第8题图)(第11题图) 二、填空题(每小题3分,共24分)9.为鼓励大学生自主创业,某市可为每位大学生提供贷款150000元,将150000用科学记数法表示为_.10.因式分解:ax-4ax+4a=_.11.如图所示,已知ab,1=28,2=25,则3=_.12.若一次函数的图象经过第一、三、四象限,则它的解析式为_ (写出一个即可).13.方程的根是_.14.如图所示,AB为O的直径,C为O上一点,且AOC="80",点D在O 上(不与B、C重合),则BDC的度数是_.15.如图所示, RtABC中,B="90",AC="12",BC="5cm" .将其绕直角边AB所在的直线旋转一周得到一个圆锥,则这个圆锥的侧面积为 _ . 16.观察下列数据:, , , , ,它们是按一定规律排列的,依照此规律,第n个数据是_ . (第14题图) (第15题图) 三、解答题(17题题6分 ,18题题8分共14分)17.计算:-3+(-)-(-3)-1+ 18.先化简,再求值:()(2x-3),其中x="3" 四、解答题(第19题10分、第20题12分,共22分)19.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元; 且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元? (2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案. 20.2010年5月1日上海世博会召开了,上海世博会对我国在政治、经济、文化等方面的影响很大.某校就同学们对上海世博会的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.根据统计图中所提供的信息解答下列问题:(1)该校参加问卷调查的学生有_名; (2)补全两个统计图;(3)若全校有1500名学生,那么该校有多少名学生达到基本了解以上(含基本了解)的程度? (4)为了让更多的学生更好的了解世博会,学校举办了两期专刊.之后又进行了一次调查,结果全校已有1176名学生达到了基本了解以上(含基本了解)的程度.如果每期专刊发表之后学生达到基本了解以上(含基本了解)的程度增长的百分数相同,试求这个百分数. (第20题图) 五、解答题(每题10分,共20分)21.有4张不透明的卡片,除正面写有不同的数字-1、2、-外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上. (第21题图) (1)从中随机抽取一张卡片,上面的数据是无理数的概率是多少? (2)若从中随机抽取一张卡片,记录数据后放回.重新洗匀后,再从中随机抽取一张,并记录数据.请你用列表法或画树形图法求两次抽取的数据之积是正无理数的概率. 22.如图所示,在RtABC中,C="90",BAC="60",AB="8".半径为的M与射线BA相切,切点为N,且AN="3".将RtABC顺时针旋转120后得到RtADE,点B、C的对应点分别是点D、E.(1)画出旋转后的RtADE; (2)求出RtADE 的直角边DE被M截得的弦PQ的长度; (3)判断RtADE的斜边AD所在的直线与M的位置关系,并说明理由. (第22题图) 六、解答题(每题10分,共20分)23.星期天,小强去水库大坝游玩,他站在大坝上的A处看到一棵大树的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面成60角.在A处测得树顶D的俯角为15.如图所示,已知AB与地面的夹角为 60,AB为8米.请你帮助小强计算一下这颗大树的高度? (结果精确到1米 .参考数据1.4 1.7) (第23题图) 24.某服装厂批发应季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示. (1)直接写出y与x的函数关系式; (2)一个批发商一次购进200件T恤衫,所花的钱数是多少元?(其他费用不计); (3) 若每件T恤衫的成本价是45元,当10OX500件 ( x为正整数)时,求服装厂所获利润w(元)与x(件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? (第24题图) 七、解答题(本题12分)25.如图所示,(1)正方形ABCD及等腰RtAEF有公共顶点A,EAF="90", 连接BE、DF.将RtAEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰RtAEF变为RtAEF,且AD="kAB",AF="kAE",其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将RtAEF变为AEF,且BAD=EAF=,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用表示出直线BE、DF形成的锐角. (第25题图) 八、解答题(本题14分)26.如图所示,平面直角坐标系中, 抛物线y="ax"+bx+c 经过 A(0,4)、B(-2,0)、C(6,0).过点A作ADx轴交抛物线于点D,过点D作DEx轴,垂足为点E.点M是四边形OADE的对角线的交点,点F在y轴负半轴上,且F(0,-2).(1)求抛物线的解析式,并直接写出四边形OADE的形状; (2)当点P、Q从C、F两点同时出发,均以每秒1个长度单位的速度沿CB 、FA方向运动,点P运动到O时P、Q两点同时停止运动.设运动的时间为t秒,在运动过程中,以P、Q、O、M四点为顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围; (3)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N的坐标;不存在,说明理由. (第26题备用图) 数学试卷答案及评分标准: 一 1.B 2.D 3.A 4.B 5.C 6.A 7.D 8.C二 9. 1.5×10 10.a(x-2) 11.53 12.y="x"-1(在y="kx"+b中k0,b0即可) 13.x= 14.50°或130° 15.60cm 16.或或 三 17. 解:-3+(-)-(-3)-1+=3+(-8)-9-1+4-4分=3-8-9-1+4=-11-6分18解:()(2x-3)=-3分=x+2x-2x+3= x+3-5分 当x="3"时,原式=3+3=12-8分四19解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.-1分根据题意可得 -3分解这个方程组得-4分 答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.-5分(2)设本次购买乙种笔记本m个,则甲种笔记本(2m-10)个.-6分根据题意可得 3(2m-10)+5m320-8分解这个不等式得m31 -9分 因为m为正整数,所以m的最大整数值为31 答:本次乙种笔记本最多购买31个.-10分20解:(1) -3分 从列表或树形图可以看出,所有可能出现的结果相同,共有9种,其中积是无理数的只4种,分别是-,2,-,2,P(积为无理数)= -10分五21.(1)50-2分(2)见统计图-6分(3)600-8分 (4)解:设这个百分数为x.根据题意可得 600(1+x)=1176-10分 (1+x)=1.96 解得 x=0.4 x=-2.4(负值不合题意舍去)-12分答:这个百分数为40(注:若(3)的计算结果出现错误,将其代入(4)中,按错误的结果进行解答,只要正确,只扣1分.)六、22.(1)如图RtADE就是要画的(图形正确就得分) .-2分(2) 2-5分(3)AD与M相切. -6分证法一:过点M作MHAD于H,连接MN, MA,则MNAE且MN= 在RtAMN中,tanMAN=MAN="30"°-7分DAE=BAC="60"°MAD="30"°MAN=MAD="30"°MH="MN"(由MHAMNA或解RtAMH求得MH=从而得MH="MN" 亦可)-9分AD与M相切. -证法二:连接MA、ME、MD,则S=-8分过M作MHAD于H, MGDE于G, 连接MN, 则MNAE且MN=,MG="1"AC·BC=AD·MH+AE·MN+DE·MG由此可以计算出MH = MH="MN" -9分AD与M相切-10分23解:AFCE ABC="60"° FAB="60"°FAD="15"°DAB="45"°-1分DBE="60"° ABC="60"°ABD="60"°-2分过点D作DMAB于点M,则有AM="DM"tanABD= tan60°= DM=BM-3分设BM="x"则AM="DM"=x AB="AM"+BM="8" x + x="8"-5分 x= 3.0或 x="4"(-1)DM=x 5或DM=x="12"-4-7分ABD=DBE="60"° DEBE DMABDE="DM"5(米)或DE="DM"=12-45(米)(由DEBDMB得DE="DM"同样正确或根据BD="2BM"=2x,由DE="BDsin60"°=x5(米)亦正确)-9分答这棵树约有5米高. -10分(不同解法,参照以上给分点,只要正确均得分.)24、解:(1)当0x100且x为整数(或x取1,2,3,,100)时,y="80" 当100x500且x为整数(或x取101,102,500)时,y=x+85;当x500且x为整数(或x取501,502,503,)时,y="60".-4分(注:自变量的取值范围只要连续即可)(2)当x="200"时,y=×200+85=75所花的钱数为75×200=15000(元). -6分(3)当100x500且x为整数时, y=x+85 w=(y-45)x=(x+85-45)xw=x+40x-8分w=(x-400)+8000-9分0当x="400"时, w最大,最大值为8000元答:一次批发400件时所获利润最大,最大利润是8000元. -10分七、25.(1)证明:延长DF分别交AB、BE于点P、G.-1分 在正方形ABCD和等腰直角AEF中AD="AB",AF="AE",BAD=EAF =90°FAD=EAB FADEAB -2分FDA=EBA DF="BE" -3分DPA=BPG, ADP+DPA="90"°EBP+BPG="90"° DGB="90"°DFBE -5分(2)改变. DF="kBE",=180°-.-7分证法(一):延长DF交EB的延长线于点HAD="kAB",AF="kAE"=k, =k =BAD=EAF =FAD=EABFADEAB-9分=k DF="kBE"-10分由FADEAB得AFD=AEB AFD+AFH="180"AEB+AFH="180"°四边形AEHF的内角和为360°,EAF+EHF="180"°EAF=,EHF=+=180°=180°-12分证法(二):DF="kBE"的证法与证法(一)相同延长DF分别交EB、AB的延长线于点H、G.由FADEAB得ADF=ABEABE=GBHADF=GBH=BHF =GBH+G=ADF+G.在ADG中,BAD+ADF+G="180"°,BAD=+=180°=180°-12分证法(三):在平行四边形ABCD中ABCD可得到ABC+C="180"°EBA+ABC+CBH="180"°C=EBA+CBH在BHP、CDP中,由三角形内角和等于180°可得C+CDP=CBH+BHPEBA+CBH+CDP=CBH+BHPEBA+CDP=BHP由FADEAB得ADP=EBAADP+CDP=BHP即ADC=BHPBAD+ADC="180",BAD=,BHP=+=180 =180-12分(有不同解法,参照以上给分点,只要正确均得分.)八、26.解:(1)抛物线经过A(0,4)、B(-2,0)、C(6,0)得到-2分解得a=- , b= , c="4"抛物线的解析式为y=-x+x+4-3分(或y=-(x+2)(x-6)或y=-(x-2)+. )四边形OADE为正方形. -4分 (2)根据题意可知OE="OA"=4 OC="6" OB="OF"=2CE="2"CO="FA"=6运动的时间为tCP="FQ"=t过M作MNOE于N,则MN="2" 当0t2时,OP="6"-t, OQ="2"-t -5分S=+=(6-t)×2+(6-t)(2- t)=(6-t)(4- t)S = t-5t+12. -7分当t="2"时,Q与O重合,点M、O、P、Q不能构成四边形.(不写也可)当2t6时,连接MO,ME则MO="ME"且QOM=PEM="45"-8分FQ="CP"=t,FO="CE"=2 OQ="EP" QOMPEM 四边形OPMQ的面积S=×4×2=4-10分综上所述,当0t2时,S=t-5t+12;当2t6时,S="4"(3)存在N(1,5),N(5,),N(2+,-2),N(2-,-2) -14分