欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    《直线与平面平行的判定》课堂教学实录(说课教学设计).doc

    • 资源ID:2886333       资源大小:11.33MB        全文页数:9页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《直线与平面平行的判定》课堂教学实录(说课教学设计).doc

    直线与平面平行的判定在人教版普通高中课程标准实验教科书(数学必修2第二章第二节)中直线与平面平行的判定约2课时,本节是第一课时.下面笔者从教材分析、学情分析、教法分析、教学过程分析、板书设计等方面谈谈这一节课的教学设计.一、【教材分析】(一)教材内容分析本节课主要学习直线和平面平行的判定定理以及初步应用.线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的判定充分体现了线线平行和线面平行之间的转化,它既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带, 在高中立体几何中占有很重要的地位.按照新课标的设计理念,本节的教学设计淡化了几何论证的要求,遵循“直观感知,操作确认,思辨论证,度量计算”的认识过程展开,让学生经历“将空间问题平面化”的“降维”过程,体会化归与转化的数学思想.培养学生空间想象能力,发展学生的合情推理能力及一定的推理论证能力,为学生后继学习面面平行的判定做好“知识、方法及技能”的准备.(二)教学目标分析针对教材特点、大纲要求以及学生实际,分别从知识、能力以及情感与态度三方面来确定本节课的教学目标如下:1.知识与技能:(1)掌握直线与平面平行的判定定理.(2)会运用判定定理解决问题.2.过程与方法: (1)通过直观感知、动手操作、抽象概括的数学化过程,自主建构直线与平面平行的判定定理.(2)经历运用判定定理的过程,培养学生发现问题、提出问题、分析问题、解决问题的能力.(3)经历“空间转化为平面”“无限转化为有限”等转化过程,体会本节课的核心数学思想化归与转化.(4)发展空间想想能力.3.情感态度和价值观:(1)与学生一起体验探索的乐趣,增强学习数学的兴趣.(2)通过创造情境,让学生亲身经历数学研究的过程,体会数学的理性之美.(3)展现“线线线面”的联系与转化,渗透唯物主义观点.(三)教学重点、难点分析与突破重点:直线与平面平行的判定定理及其应用.突出重点的方法:借助图片,直观感知;设置情境,动手操作;实例观察,归纳概括;定理应用,认识深化.难点:线面平行判定定理的建构过程.突破难点的关键是:以问题为主线,逐层提升,促进学生讨论探究,弄清原理.二、【学情分析】思维上,高一学生已经有了“通过观察、动手操作并抽象概括等活动获得数学结论”的体验,对空间几何体有了整体的感受,了解了点、直线和平面的位置关系及有关公理、定理.能力上,学生已具备一定的实际生活经验,初步具有了一定的空间想象能力、几何直观能力和推理论证能力,有助于对本节课的学习.但高一学生思维发展不平衡,个体差异较大,所以我按照大纲要求,结合学生情况,补充了一些问题情境和数学实例以烘托重点,攻克难点;在教学设计和例题处理、作业布置上也都兼顾到了这种差异性.三、【教法分析】新课程标准把“自主探究、合作交流”作为本次课程改革积极倡导的学习方式之一,教材在内容处理上更注重教师对教材个性化的处理.本教学内容在教法设计上充分利用“观察”“思考”“探究”等栏目,让学生亲历知识的发生和发展过程,确保“直观感知操作确认思辨论证度量计算”四个层次认识过程的展开和实施;在原有教材内容的基础上重组整合教学内容,创设宽松的开放式问题情境,把主体推向一幕幕知识发生、发展的场景“思维最近发展区”,提高探究效率;向四十五分钟要效益,围绕重难点,坚持精讲精练的原则,提高学生知识迁移能力.四、【课前准备】(1)学生的学习准备:指导学生有效预习,搜集线面平行的图片和例子,课前进行汇总.(2)教师的教学准备:汇总学生图片,作成幻灯片.(3)教学环境的设计与布置:选择多媒体教室、投影仪等;学生两人坐一桌,为一个学习小组.(4)教学用具的设计和准备:教师准备长方体模型,硬皮书(表平面),细而直的教鞭(表直线);学生自备笔(表直线),课本(表平面).五、【教学过程】基于以上分析,我的教学过程设计如下:(一)创设情境、直观感知幻灯片投影,生活情境展示:(1)生活中常见的球门的形状;(2)公园里的长椅;(3)宽敞明亮的教学楼. 图1 图2 图3教师:以上的情境中存在哪些线面位置关系?生1:具体地说出图片中存在的线面位置关系,包括线在面内、线面平行、线面相交等位置关系.教师:这堂课我们就来研究直线与平面平行的位置关系.请同学们试举出生活中线面平行的例子. 生2:为了减少眩光,黑板的照明灯是跟黑板平行的,学生课桌上面的灯管是跟窗户平行的.生3:架设的路灯之间的电线是和地面平行的.问题1:大家举的例子都很恰当,但在以上例子中你是怎样保证直线和平面是平行的?依据是什么?生4:利用直线与平面平行的定义,直线与平面没有公共点.教师追问:很好,但是你是怎样知道直线与平面没有公共点的?学生无言以对.因为直线与平面的无限延伸性,我们无法做到“眼见为实”,即找它们是否有交点是不可能的.所以很自然引出,我们需要找一条比较实用的直线与平面平行的判定方法,引出课题直线与平面平行的判定定理.【设计意图】之所以这样引入是因为:利用生活情境,比较容易吸引学生的注意力,既回顾了旧知,又激发学生进行积极的思维参与.由远及近,先通过图片进行直观感知线面平行的位置关系,再引导学生观察身边的平行关系,这样做既帮助学生对线面平行的位置关系有一个直观的立体的初步感受,又可为引出课题埋下伏笔.(二)探索研究、操作确认1.探索研究 图4 图5 图6探究1:学生观察:公园里的长椅图片,若每片木条看成一条直线,则靠背面中的直线与座椅所在平面、与座椅面中的直线具有什么位置关系?(图4) 教师动手:转动教室里的门,学生观察门的边缘与门框所在的平面、与门固定边具有什么位置关系?(图5)学生动手:将一本书平放在桌面上,翻动书的封面,观察封面上边缘与桌面所在平面、与封面的下边缘具有什么位置关系?(图6)生5:以上所要求观察的直线与直线、直线与平面都是平行的位置关系.问题2:请同学们想一想,由这三个试验,要保证所观察的直线和平面是平行的,需要满足那些条件?生6:如果所观察的直线平行于平面内的一条直线,那么这条直线平行于这个平面.此时,教师配合学生的回答,转动教室的门演示两条直线落在同一平面内的情况,帮助学生找出答案漏洞.由生6重新修订自己的答案:如果所观察直线在平面之外,并且和平面内的一条直线平行,那么这条直线和这个平面平行.【设计意图】还是遵循从直观到抽象的思维规律,通过各种手段和方法引领学生从直观感知的角度,动手操作的切身体验,感受线面平行应具有的特点,培养学生的数学素养.探究2问题3:怎样对以上判定方法进行数学抽象呢?ab第一步:几何图形的抽象. 图7 图8 图9教师打出幻灯片,长椅的抽象化图形,把每个木条看成一条直线,把靠背面和座椅面看成两个平面,抽象为图7;指出两组直线分别平行,可以分别平移成为两条直线,即将无限转化为有限来研究,进而抽象为图8;最后去掉其中一个平面,剩下的平面设为,面外直线设为a,面内直线设为b,最终抽象为图9. 第二步:请同学们用文字语言和符号语言把判定线面平行的方法表达出来.生7:定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.生8:符号语言:a, b Þ a.ab (学生表述,教师板书规范)教师:这种用“线线平行”来判定“线面平行”的方法就是直线与平面平行的判定定理,简记作:线线平行,则线面平行.应用定理时要注意三个关键:(1)直线a在平面外;(2)直线b在平面内;(3)直线a和直线b平行.其中第三点体现了把“线面平行”转化为“线线平行”、把立体问题转化为平面问题的化归思想.【设计意图】教育过程的规律表明:教师对学生的教育不是简单的给予,不是移植.知识的传授、智力的发展、能力的培养、思想品德的形成,都必须通过学生的积极思维运动才能实现.本探究过程的设计完成两个目的:一是由探究1引起学生思考,由生活中的实例总结出线面平行需具备的条件.二是由探究2完成对线面平行判定定理的抽象.在探究中培养学生获取知识的能力、逻辑思维能力及空间想象能力,不断提高学生的几何语言表达等能力.2、操作确认:图10问题4:上课伊始同学举得线面平行的例子中,怎样悬挂能保证灯管和窗户所在墙面是平行的?架设的电线和地面是平行的?生9:(图10)由灯管两端与棚顶的触点向窗户所在墙面与棚顶的交线做垂线,测量垂线段长,长度相等时两垂线段、垂足间线段和灯管就构成了矩形,这样灯管就与窗户所在墙面与棚顶的交线平行了,因为交线在窗户所在墙面内,根据线面平行的判定定理,灯管就与窗户所在的墙面平行了. EBFDGCA图12图11生10:(图11)架设电线时测量两相邻电线杆与地面交点到固定电线的位置,若这两段距离相等,两电线杆、电线还有两电线杆与地面交点的连线就会构成一个“无形”的平行四边形,这样电线就平行于两电线杆与地面交点的连线,根据判定定理,电线就平行于地面了.教师:大家提出的解决方案都很好,可见知识源于生活,又为我们拥有更美好的生活服务.【设计意图】学以致用,站在学生思维的最近发展区上,指导主体有效操作,进行定理的初步应用,不仅让学生真正成为知识探索者和发现者,更要成为问题的解决者和终结者.(三)思辨论证、定理应用例1.如图12,在空间四边形ABCD中,E、F、G分别是AB、BC、CD的中点.请问你能从空间四边形ABCD中找到几组相互平行直线与平面?并说明理由.生11:直线EF/平面ACD.教师:理由呢?生11:因为E、F分别是AB、BC边上的中点,所以EF/AC,又AC平面ACD,所以直线EF/平面ACD.生12:既然EF/AC,AC也应该平行于EF所在的平面,即AC/平面EFG. 生13:同理,有FG/BD,则FG/平面ABD,BD/平面EFG.教师:同学们分析得都很好.根据判定定理,要找线面平行,就要先找到线线平行.虽然本题没有直接给出平行关系,但是根据题设,我们可以自己将存在的平行关系提炼出来.请同学们根据以上分析,在四组平行关系中选择一组,写出证明过程,注意对判定定理三个关键的把握.(教师巡视指导,规范书写)教师:我们一起来分享一下某某同学的证明过程.(投影)证明: 教师:他由中位线性质得到一组线线平行,再通过判定定理得到线面平行.思路清晰,书写规范,注意到了定理中的三个关键点,体现出线线和线面之间的转化关系.EBFDGCAH图13 思考:图12中,看上去直线AD与平面EFG并没有交点,那么是否有直线AD/平面EFG呢?生14:“看上去”并不等同于“事实”.如图13,设H是边AD的中点,连接HG、HE,则HG/AC/EF,所以平行直线HG和EF唯一确定一个平面,即平面EFGH就是平面EFG,所以直线AD与平面EFG交于点H,从而并不是平行关系.教师:回答的真好!这种利用图形,又不受制于图形的能力是不可或缺的.生14通过补图,让我们直观地感受到直线AD与平面EFG并不是平行的.图14CBADB1EA1D1C1O他采用的方法得当,论证充分,让人心悦诚服.例2:如图14,在正方体ABCD-A1B1C1D1中,E为DD1的中点,试证明直线BD1/平面AEC.教师:根据线面平行的判定定理,得在平面EAC内找到与BD1平行的直线,怎样找到这条直线呢?生15:连接BD,设BD与AC的交点为O,再连接EO,则EO就为要找的直线.教师:请进一步解释一下为什么直线EO就为所找的直线好吗?生15:因为E是DD1的中点,O是BD的中点,所以EO就是DBD1的中位线,所以有EO/BD1.教师:请同学们将这道题目整理出来,请生15板书示范.生15:连接BD,设BD与AC的交点为O,连接EO.教师:原图中所涉及的平面如果没有符合条件的直线时,要通过合理添加面内线,拼凑出符合定理的三个条件来,另外运用定理时要特别注意对“内、外”二字的强调.【设计意图】考虑到学生处于初学阶段,精心打造开放性、基础性例题, 引导学生找出符合判定定理的三个条件,从而得出要证结论.让学生用自己的研究成果解决具体问题,感受知识的力量,体验成功的喜悦,并转化为学习的新动力.在师生互动中,把握学生个体思维暴露的过程,老师应及时激励评价,解读定理,进一步明确判定定理的三个条件,既突破难点,又培养学生严谨的逻辑推理能力.(四)演练巩固、深化理解CBADB1A1D1C1图151.如图15,在长方体ABCD-A1B1C1D1中,(1)与AB平行的平面是 ;(2)与面BCC1B1平行的直线是 .生16:(1)平面A1B1C1D1和平面CDD1C1;(2)直线AD、DD1、D1A1、A1A.图16DABCPMNG2.如图16,已知P是平行四边形ABCD外一点,M,N分别是PC,AB的中点.求证:MN/平面PAD.生17:设G为PD中点,连接GA、GM【设计意图】基于对定理第一课时学习应以基础性掌握为主的考量,课堂练习1以长方体为模型,重点考察对定理的理解;练习2强调面内线的找法,难度控制在比较容易找到解题思路、应用判定定理解决问题的范围内,但对学生对图形的掌控和处理能力的要求有所提高.(五)交流体会、反思提升体会1:通过这节课的学习,你有那些收获?生18:我的收获一是学会了判定线面平行的另一种方法,不仅可以用定义法,更可以用操作性更强的线面平行的判定定理;二是体会了转化思想在数学应用中的魅力,即由证明线面平行转化为证明线线平行.体会2:通过这节课的学习你发现了什么?生19:我发现数学与生产生活的紧密联系,学好数学,可以更好得为生产生活服务.反思1:在本节课的学习中,你还有哪些疑问?生20:我们以前学习定理一类的知识都有严格的证明,可是线面平行的判定定理没有给出严格的证明,总觉得不踏实,我的疑问是判定定理的证明方法是什么?教师:生17对数学课程特点的把握能力真叫老师意外和惊喜,其实判定定理的严格证明会在选修系列学习中给出,当然,有兴趣的同学可以先行探究,相互交流或者和老师交流.反思2:针对这堂课的学习你有什么样的自我评价?生21:我觉得整堂课思维量很大,能够集中精力和同学一起或主动或被动地进行思考.学完之后感觉思路清晰,方法明确,我对自己多了一份信心,觉得自己能够用判定定理解决与线面平行有关的问题了.生22:我觉得自己是愿意思考问题的,但是感觉处理问题的能力不强,反应比较慢,这方面我会多注意,尽快提高的.【设计意图】通过体会和反思,引导学生从知识内容和思想方法两个方面进行小结,既使学生清晰地认识本节课的知识结构、领会数学思想方法, 完成知识建构; 又培养学生自主反思的学习习惯, 及时感悟如何学会合作、学会交流、学会评价, 在体验成功的愉悦的同时,使学生在知识、能力、情感三个维度得到提高,并为下节的学习提供改进方向. (六)课后实践、书面反馈1、必做题:A组(P.62 )第3题.BC图17APCVB图182、选做题: 如图17,已知:A、B、C、D四点不共面,M、N分别是ABD和BCD的重心.求证:MN平面ABD.3.究性作业:一木块如图18所示,点P在平面VAC内,过点P将木块锯开,使截面平行于直线AC和VB,应该怎样画线?【设计意图】必做题是课本习题,是为了反馈学情,巩固所学知识,强化基本技能的训练,培养学生良好的学习习惯和品质.选做题是遵循“个性差异原则”,尊重个体发展要求而设计,是给学有余力、探究能力强的学生提供自由发展的空间.研究性作业是个开放性题目,是课堂所学知识的延伸,目的是进一步激发学生学习热情.六、【板书设计】判定定理:文字语言 图形语言符号语言221直线与平面平行的判定例1(详解过程)例1思考题的处理过程:例2(详解过程)课堂练习:

    注意事项

    本文(《直线与平面平行的判定》课堂教学实录(说课教学设计).doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开