欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    Propeller design calculation.doc

    • 资源ID:2884580       资源大小:189KB        全文页数:5页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Propeller design calculation.doc

    Propeller design calculationHere we describe the steps in a simple propeller design calculation, using lifting line theory. A table with an example is given afterwards. This corresponds to chapter 5.1 in Minsaas “Propeller Theory”, but be aware that the example in chapter 5.1 have several numerical errors, and the different lines in the example table dont necessarily come in order of calculation.The propeller design calculation consists of three steps:1. Calculation of thrust and torque2. Check of risk of cavitation3. Determination of camber and pitch distributionCalculation of thrust and torque1. Select propeller diameter and RPM. A Bp-d diagram or experience might be used.2. Select blade section thickness and camber distribution, using for instance tabulated data in books such Abbott & von Doenhoff “Theory of wing sections”3. Design radial chord length distribution c(r)4. Design radial thickness distribution t(r)5. Find radial wake distribution w(r) from model tests or from empirical data6. Design circulation distribution. The following generic type of distribution is frequently used: . In this case, the design is about selecting values of k, a, and m. 7. Calculate mean induced tangential velocity UT at all radii: 8. Solve to find mean axial induced velocity UA at all radii9. Find mean hydrodynamic angle of attack bi at all radii: 10. Find correction factors for finite number of blade to determine values of UT and UA at the blades. Two alternative methods:a. Goldstein factors (used in the example below)b. Induction factors11. Calculate , , and : 12. Calculate the resulting total velocity at each radius: 13. Calculate the lift of each section: 14. Calculate the corresponding lift coefficient: 15. Calculate the drag coefficient of each section: 16. Calculate the drag of each section: 17. Calculate total thrust of each section: 18. Calculate torque of each section: 19. Integrate (sum up) to find total thrust and torque20. Are the thrust according to required thrust?a. No: Go to step 6 and adjust the circulation distribution. Change of RPM or diameter, is also possible.b. Yes: Proceed to cavitation checkExample calculation Circulation distribution parameters:k=20a=0.1m=0.4A spreadsheet containing the formulas and numbers behind this calculation is available on the subject web pagesMain input data:Vs18knotsT1080kNRPM150n=2.5HzD6mxboss0.2rboss0.6mz4bladesWater Density1025kg/m3Kin.viscosity1.19E-06m2/sCalculation of thrust and torque:x=r/R0.2040.2840.3640.4440.5240.6040.6840.7640.8440.924r0.6120.8521.0921.3321.5721.8122.0522.2922.5322.772xx0.0050.1050.2050.3050.4050.5050.6050.7050.8050.905w0.1490.1370.1290.1230.1180.1130.1100.1070.1040.102t0.2190.1980.1780.1580.1380.1180.0970.0770.0570.037c1.2871.4881.6361.7381.7951.8041.7571.6421.4351.07G3.4711.7215.2117.5819.1720.0220.0619.1417.0313.15VA7.8827.9928.0688.1268.1728.2108.2428.2708.2948.316UTmean0.9032.1882.2172.1001.9411.7591.5561.3291.0700.755UAmean0.9882.8553.6044.1014.4324.6134.6354.4714.0673.274bi42.43537.46931.59727.11623.64820.86918.55616.55514.74612.983C(x,z,bi)1110.9970.9930.9840.9640.9240.8410.66UT0.9032.1882.2172.1061.9551.7871.6141.4381.2731.144UA0.9882.8553.6044.1144.4644.6884.8084.8384.8364.960bi42.4437.4731.6027.1323.6920.9518.7116.8515.3114.10V m/s12.41415.48318.83722.32725.89729.52033.18036.86740.57644.306Lift N/m44191185934293683402246508889605893682192723201708294596990CL0.1090.2540.2470.2260.2060.1880.1720.1580.1460.139Rn1.35E+071.94E+072.60E+073.27E+073.92E+074.49E+074.91E+075.10E+074.90E+073.99E+07CF2.85E-032.68E-032.56E-032.47E-032.40E-032.35E-032.32E-032.30E-032.32E-032.39E-03CD7.64E-036.79E-036.23E-035.83E-035.53E-035.31E-035.14E-035.04E-035.00E-035.11E-03dr0.2520.240.240.240.240.240.240.240.240.228dD N783119217792485327741074894553058125018dTD N5287259321133131614681570160315341223dQDNm35480616552946471869509512121311419413491dT N7691346925910284781110528134335153500164510162426130789dQ Nm495223935419836159181846101151117304127468127823105425Resulting performance:Thrust1042.4kNTorque793.5kNmPower12464kWVs18knotsRPM150KT0.126KQ0.0159JA0.544h0.682Cavitation checkTo check for cavitation, we need to estimate the local velocity at each blade section (radius). To do so, we need to select thickness and velocity distributions. Mostly, standard profiles for which properties are known are selected. For the example, we have chosen NACA a08 camber distribution and NACA 16 thickness distribution. Other data we need are:Draugt to propeller shaft: 7 mWater vapour pressure: pv=1500 PaAtmospheric pressure pa=101325 PaCalculation procedure:1. Calculate cavitation number: 2. Calculate velocity due to thickness: , where value for is taken from the table in Appendix I in Abbott & Doenhoff. 3. Calculate velocity due to camber: where the value for is taken from the table in Appendix II in Abbott & Doenhoff.4. Calculate total max velocity at the suction side of each section: 5. Check for cavitation. If then we will get cavitation. Often, a margin is introduced, for instance: Example of cavitation check:s2.0771.3160.8760.6140.4490.3400.2650.2110.1720.141v/V1.1941.1521.1241.1041.0881.0751.0631.0541.0451.039Dv/V0.0300.0710.0690.0630.0570.0520.0480.0440.0410.039Vx15.20018.93022.46926.05029.65533.26736.85840.46144.06547.763(Vx/V)2-10.4990.4950.4230.3610.3110.2700.2340.2040.1790.162Cavitation?NoNoNoNoNoNoNoNoYesYesDetermination of camber and pitch distributionThe point here is correction of the geometry for the fact that the propeller blade sections arent foil sections alone in linear motion, but operate in vicinity of other blades in a helical motion. This can be taken into account directly by lifting surface calculations, but can also be taken into account in an approximate manner, as described in Minsaas “Propeller Theory” chapter 6.1. For the purpose of this example, we use the following correction formulas:Camber correction factor: Correction factor for angle of attack: Correction factor for effect of thickness: The basis for the calculation is that the propeller blade sections are designed to lift purely by camber. It is fairly straight forward to modify the procedure to allow for a combination of angle of attack and camber. Calculation procedure:1. Calculate max camber of each radius: where is the max camber value found in the tabulated data for NACA a08 camber profile.2. Calculate correction of ideal angle of attack due to 3-D effects: 3. Calculate correction of ideal angle of attack due to thickness effects: 4. Calculate resulting geometric pitch distribution: Example calculation of camber and pitch distribution:kc1.6681.6141.5571.5091.4831.4941.5531.6751.8732.159ka1.01241.03341.07041.12781.21011.32171.46721.65111.87782.1518kt7.7606.9316.3805.8065.2284.6494.0553.4282.7331.872f/c0.01180.02670.02500.02220.01990.01830.01740.01720.01780.0195ai30.16950.40460.40680.39340.38430.38270.38870.40190.42290.4594at1.32050.92220.69420.52780.40200.30410.22390.16080.10860.0647P/D0.61730.71730.73410.74340.74920.75260.75360.75290.75220.7576

    注意事项

    本文(Propeller design calculation.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开