复合材料力学讲义.ppt
复合材料力学,1,课程说明,工程力学/固体力学专业课时:36学时任课教师:梁军联系方式0451-,参考教材,R.M.琼斯:复合材料力学(中、英文)沈观林、胡更开:复合材料力学,清华大学出版社王震鸣:复合材料力学与复合材料结构力学Stephen W.Tasi:复合材料设计李顺林:复合材料结构设计方法J.R.Vinson:The Behavior of Structures Composed of Composite Materials,课程设置目的和学习方法,What are the classes and types of composites and structures?Why are composites used instead of metals,ceramics,or polymers?How do we estimate composite stiffness&strength or other properties?What are some typical applications?,兴趣、责任,课程设置目的和学习方法,学习目的复合材料及其结构概念和内涵为什么要学习复合材料力学?主要学习什么内容?如何去用这些知识?学习方法概念清晰、基础扎实力学与材料相结合微观与宏观相结合试验测量与理论分析模型相结合从实践中来,回到实践中去,复合材料力学的相关课程,材料力学,复合材料学,复合材料力学,弹性力学,复合材料结构力学,复合材料结构设计方法,复合材料动力学非线性复合材料力学柔性复合材料力学编织复合材料力学,固体力学范畴,复合材料力学的相关课程,固体力学:结构受力分析与材料的力学性能弹性力学 材料力学材料学:从材料的物理、化学性质、材料工艺、结构、组分的角度复合材料学,复合材料力学的相关课程,宏观力学假设材料是均质的,只从复合材料的平均表观性质来检验组份材料的作用微观力学从微观的角度检验组份材料之间相互影响研究复合材料的性能细观力学方法固体力学与材料科学之间的交叉科学,从材料的细观结构入手,研究其与材料力学性能的关系用连续介质力学研究材料的细观结构与宏观性能关系,复合材料力学,复合材料力学研究复合材料的微观和宏观力学特性、包括刚度、强度、破坏机理、断裂、疲劳、冲击、损伤、应力集中、边界效应、环境响应和力学测试等力学问题复合材料结构力学研究复合材料结构的应力、变形、稳定和振动等问题,复合材料力学课程主要内容,复合材料及其结构简介复合材料的力学特点及其一般理论简单层板宏观力学性能复合材料简单层板刚度与强度的微观力学分析方法层合板宏观力学性能的分析方法(刚度与强度)复合材料力学的拓展与应用(1)复合材料力学的拓展与应用(2)答疑、考试,复合材料,自然界中普遍存在着天然复合材料树木、骨骼、草茎与泥土复合等天然材料几乎都是复合材料,采取复合的形式是自然的规律六千年以前,陕西西安半坡村的仰韶文化住房遗址说明我国古人已经开始用草混在泥土中筑墙和铺地,这种草泥就是最原始的纤维增强复合材料,它与现代高性能纤维增强复合材料非常相似,人的能动性,复合材料,历史曾用材料来划分人类的文明时代的四次重大突破天然材料:新石器时代人工材料:铜器和铁器时代合成材料:塑料(1924)、橡胶(1931)复合材料:玻璃纤维(1942),玻璃纤维增强塑料(Fiber Glass Reinforced Plastics,FRP):俄文叫“CTeknonJ1Anhk”(玻璃塑料)。当时中文里没相应的词,想到材料里有玻璃,强度又高,就叫“玻璃钢”,复合材料,金属材料的高峰,四分天下,复合材料,复合材料是指由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料,它既能保留原有组分材料的主要特色,又通过材料设计使各组分的性能互相补充并彼此关联,从而获得新的优越性能,与一般材料的简单混合有本质的区别(1994年出版,师昌绪主编材料大辞典)由两种以上材料组合而成的、物理和化学性质与原材料不同、但又保持某些有效功能一般一种材料作为基体,其他材料作为增强剂一定尺度上的组合微观尺度上的组合(合金),复合材料,先进复合材料(Advanced Composite Materials,简称ACM)是指加进了新的高性能纤维的而区别于“低技术”的玻璃纤维增强塑料的复合材料(美国麻省理工学院材料科学与工程系教授J.P.Clark,1985)以碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶纤维、高密度聚乙烯纤维等高性能增强材料,并使用高性能树脂、金属与陶瓷等为基体,制成的具有比玻璃纤维复合材料更好性能的先进复合材料,What are advanced composites?,Advanced composite materials are refereed to those composite materials developed and used in the aerospace industries.They usually consist of high performance fibers as reinforcing phases and polymers or metals as matrices.,复合材料,复合材料经历了古代、近代和现代三个阶段自古以来,人们就会使用天然的复合材料木材、竹、骨骼等。最原始的人造复合材料是在粘土泥浆中掺稻草,制成土砖;在灰泥中掺马鬃或在熟石膏里加纸浆,可制成纤维增强复合材料近代复合材料最早的有玻璃纤维增强树脂(如酚醛树脂、环氧树脂等)玻璃钢高性能纤维和其他各种形式的先进复合材料,第二次世界大战后期,为了增加雷达罩透波率,研制成玻璃钢,没料到这类复合材料后来由于它有高的比强度和比刚度而成为使钢、铝、钛等金属有时相形见拙的新型结构材料,复合材料,随着复合材料的广泛应用和人们在原材料、复合工艺、界面理论、复合效应等方面实践和理论研究的深入,使人们对复合材料有了更全面地认识现在人们可以更能动地选择不同的增强材料(颗粒、片状物、纤维及其织物等)和基体进行合理的性能(功能和力学)设计(如宏观的铺层设计、微细观界面设计等)采用多种特殊工艺使其复合或交叉结合,从而制造出高于原先单一材料的性能或开发出单一材料所不具备的性质和使用性能,如优异的力学性能、物理-化学多功能(电、热、磁、光、耐烧蚀等)或生物效应的各类高级复合材料。因此“复合”涵盖的范围也越来越广,复合材料,与其他高技术的出现和发展紧密结合,复合材料的内涵不断拓展从宏观尺度的复合到纳米尺度的复合从结构材料到结构功能一体化材料和多功能复合材料从简单复合到非线性复合效应的复合从复合材料到复合结构从机械设计到仿生设计,复合材料,天然复合材料,智能复合材料仿生复合材料功能复合材料纳米复合材料生物复合材料材料复合结构,先进复合材料树脂基复合材料陶瓷基复合材料金属基复合材料碳/碳复合材料,玻璃钢,复合材料,“到2020年,只有复合材料才有潜力获得20-25%的性能提升,其中陶瓷基和聚合物基复合材料的密度、刚度、强度、韧性和抗高温能力都可能有如此大的改善,而被列为最优先发展的材料”。进入21世纪,美国国防部委托国家科学研究院经过三年的调查,在2003年发表的“面向21世纪国防需求的材料研究”报告指出,复合材料,High modulusAbrasion resistant,MetalsPoor corrosion Resistance,CeramicsBrittle,GlassesBrittle,ElastomersCreep at low temp,PolymersCreep at low temp,Composites,Corrosion resistant,Corrosion resistant,Low modulusHigh strength,High strength,Moderate modulus,High ductility,复合材料的要素和分类,复合材料包括三要素:基体材料、增强剂及复合方式(界面结合形式)按增强剂形状不同,可分为颗粒、连续纤维、短纤维、弥散晶须、层状、骨架或网状、编织体增强复合材料等按照基体材料的不同,复合材料包括聚合物基复合材料、金属基复合材料、陶瓷基复合材料、碳/碳复合材料等按使用功能不同,可分为结构复合材料和功能复合材料等,复合材料的要素和分类,复合材料的要素和分类,增强纤维玻璃纤维、碳纤维、聚芳酰胺纤维(Kevlar、Apmoc)、硼纤维、碳化硅纤维树脂基体热固性聚合物聚酯、环氧、酚醛、聚酰亚胺热塑性聚合物尼龙、聚乙烯、聚苯乙烯,复合材料的要素和分类,在RMC中,增强材料是决定复合材料的拉伸强度、模量、延伸率的关键组分,增强纤维的种类、机械性能核物理特征,在即体重的体积含量及纤维的取向决定了复合材料的性质树脂基体则是粘接并包容纤维,使纤维免受摩擦损伤,均衡和传递构件所承受的载荷的主要组分,树脂基体的种类、物理特性和化学特性决定了复合材料的剪切强度、横向拉伸强度(非纤维方向)、压缩强度、耐化学腐蚀等性质),复合材料的性能,强度刚度耐腐蚀性耐磨性重量疲劳寿命与温度有关的性能绝热性导热性隔音性,复合材料的特点,可设计性复合材料的力学、机械及热、声、光、电、防腐、抗老化等性能都可按照构件的使用要求和环境条件要求,通过组分材料的选择和匹配以及界面控制等材料设计手段,最大限度地达到预期的目的,以满足工程设计的使用性能材料与结构的同一性复合材料构件与材料是同时形成的,它有组成复合材料的组分材料在复合成材料的同时也形成了结构,一般不再由“复合材料”加工成复合材料构件,使之结构的整体性好,大幅度减少零部件和连接件数量,从而缩短加工周期,降低成本,提高可靠性,复合材料的特点,复合材料的特点,普通的工程材料大多是均匀的、各向同性的均质:性能不是物体位置的函数各向同性:物体的性能在物体内的一点的每个方向都是相同的,性能不是一点方向上的函数复合材料一般表现为非均质和各向异性的,材料性能是位置和方向的函数正交各向异性:在物体重的一点的三个相互垂直方向上有不同的材料性能,此外还有三个相互垂直的材料对称面各向异性:所有方向都有不同的性能,没有材料对称面,复合材料的特点,由于复合材料具有各向异型和非均匀性,可以通过合理的设计在我们所需要的方向上具有足够的强度和刚度,消除材料冗余,最大程度发挥材料及结构的潜力和效率复合效应的优越性复合材料是由各组分材料经过复合工艺形成的,但它不是几种材料简单的混合,而是按照复合效应形成的新的性能,这种复合效应是复合材料特有的,高比强度和高比模量,高比强度和高比模量,高比强度和高比模量,耐高温性,复合材料的特点,材料性能对复合工艺的依赖性复合材料结构在形成过程中有组分材料的物理和化学变化,因此构件的性能对工艺方法、工艺参数、工艺过程等依赖性较大,同时也由于在成形过程中很难准确地控制工艺参数,使得其性能的分散性较大 多功能性和发展性复合材料具有除力学性能以外的许多功能(如声、光、电、磁、热等),使复合材料拥有吸波、透波、耐热、防热、隔热、导电、记忆、阻尼、摩擦、阻燃、透析等功能;同时与其它先进技术相结合,如与纳米技术结合发展的纳米复合材料、与生物、医学科学相结合发展的生物复合材料、与微机电、控制、传感技术等相结合发展的智能复合材料等,复合材料的应用,复合材料的应用,主要应用于国防、航空、航天等尖端科学技术领域民用领域基础设施建设大型建筑、桥墩、水坝、桥梁等 石油工业原油输送、生产、贮存、致冷设备、气缸、海上平台等 交通运输业汽车结构件、纤维增强高速公路路面及配套设备、铁路牵引机车和车辆、舰船壳体和辅助构件、高性能自行车等能源工业火力发电的通风、管道、冷却系统,水力发电的电站、坝体和隧道建设以及风力发电、太阳能发电等新能源方面体育、娱乐产业高性能体育器械:网球、棒球、高尔夫、赛车、滑雪、鱼杆等生物、医学领域电子、信息产业,国防、航空航天领域应用,国防、航空航天领域应用,先进复合材料是国防、航空航天领域不可替代的关键材料之一,其水平和用量是国防、航空航天产品先进性的重要标志之一将先进复合材料用于航空航天结构上可相应减重20 30%,这是其他先进技术无法达到的效果,因此其在航空航天领域应用日益广泛,继铝、钢、钛之后,已迅速发展成四大航空航天结构材料之一航空航天工业的发展为先进复合材料提出了需求和经费支持,先进复合材料的成功应用促进了航空航天的进步。对先进复合材料的需求不断增加,体现了国防航空航天领域对先进复合材料研发的巨大牵引,国防、航空航天领域应用,导弹、战机的航程、速度和机动性不断提高,要求实现武器装备的轻质化和小型化,从而要求采用高比强度、高比模量的结构复合材料。航空航天复合材料从最初的木材、帆布、发展到铝合金、钛合金,再发展到复合材料,反映了航空航天技术的发展历史一直伴随着结构材料比强度、比模量不断提高的过程现在国外复合材料在武器装备上的应用有两个明显的技术特征,即范围越来越大和性能越来越好,轻质化国防、航空航天的永恒主题,降低结构质量提高结构效率,增加有效载荷,增加射程和续航能力,减小能耗、降低成本,机动性能和生存能力,国防、航空航天领域应用,以碳/碳、碳/酚醛等为代表的多向编织防热复合材料是洲际战略导弹弹头、固体火箭发动机喷管等关键热结构部件无可替代的防热/结构材料,要承受超高温、高压和多相粒子流的高速冲刷等极为恶劣的服役环境,对其使用规范、可靠性能否做出准确估算将取决于对该过程力学现象的理解深度,国防、航空航天领域应用,国防、航空航天领域追求性能第一的特点,使得其成为先进复合材料技术率先实验和转化的战场弹箭主体结构、弹头、整流罩、固体火箭发动机等各个部位卫星承力结构、天线、太阳电池帆板等坦克装甲、避弹产品等最大限度地追求复合材料化,国防、航空航天领域应用,战略导弹弹头减少1Kg结构重量,增加射程20Km,战略导弹三级固体火箭发动机减少1Kg结构重量,增加射程16Km,某第三级固体发动机壳体采用碳/环氧复合材料后,结构质量由原来的116千克降为46千克,仅此就将导弹射程提高1000Km以上,国防、航空航天领域应用,国防、航空航天领域应用,国防、航空航天领域应用,国防、航空航天领域应用,轻质化国防、航空航天的永恒主题,Reusable launch Vehicle(RLV)Space Operations Vehicle(SOV)Hypersonic Cruise Vehicle(HCV)Common Aero Vehicle(CAV)Enhanced CAV(ECAV)Expendable Launch Vehicles(ELV)Small Launch Vehicle(SLV),轻质化国防、航空航天的永恒主题,X-43,“Stratellite”飞艇,HCV,太空船1号,HAA,Helios,X-33复合材料液氢贮箱,贮箱结构形式为二层薄轻质碳纤维复合材料层板,中间为浸树脂Kevlar纸蜂窝,环氧树脂胶粘接关键技术为耐低温树脂的研发及其固化工艺实验未能成功:其破坏的直接原因是由于低温导致树脂基体开裂,氢气泄漏,升温后裂纹愈合,将气体包裹在里面,临近空间发展的飞行器,复合多层结构(TPS、热结构、机体结构),巨型框架和支撑结构(几百米的量级),先进复合材料/充气承力结构设计/材料/连接/动作,歼击机更新换代及其相关的关键材料,军用先进材料技术在军机结构减重中的重要性及发展趋势,年代,结构减重(),材料技术对军用飞机结构减重的贡献率达到70%,航空,航空领域的材料体系更加强调性能和可靠性的综合,只有应用先进复合材料才能实现减重20%以上尾翼(垂尾和平尾)复合材料化:占结构重量达到5-7%机翼复合材料化:占结构重量达到12-15%前机身和中机身复合材料化:占结构重量25%,航空,三十多年来走过了一条由小到大,由弱到强、由少到多、由结构到功能的发展道路,大致分为三个阶段第一阶段:用于舱门、口盖、整流罩以及襟、副翼、方向舵等操纵面上,受力较小、规模较小,于60年代末70年代初完成第二阶段:用于垂尾、平尾等受力较大、规模较大的尾翼一级部件,自70年代初始,至今仍在延续,现军机尾翼一级部件已均为复合材料的了。其中F-14的硼/环氧复合材料平尾于1971年前后研制成功,是复合材料发展史上一个重要里程碑,此后则有F-15、F-16、F-18、B1-B、幻影2000和幻影4000等,此时复合材料用量一般不超过结构总重的5%,航空,第三阶段:用于机翼、机身等主要受力结构上、受力很大、规模很大。其中美国麦道飞机公司于1976年率先研制F-18的复合材料机翼,并于1982年进入服役,把复合材料用量提高到了13%,此后该公司又将复合材料用于AV-8B的机翼和前机身上,其用量为26%,使复合材料在飞机上的应用跨入了第三个阶段,自80年代初始至今此后世界各国较新研制的性能先进的军机机翼一级的部件已几乎无一例外地都是复合材料的了,机身也程度不同的采用了复合材料:如美国的B-2、F-22、F-35(JSF),法国的“阵风”(Rafale)、瑞典的JAS39、欧洲英、德、意、西四国的“台风”(EF2000),日本的F2、印度的LCA、俄罗斯的C-37等目前军机上复合材料用量占结构总重的2050%左右不等,航空,四十年代的原子弹、五十年代的北极星导弹,高度机密,航空,航空,J10,J11B,先进复合材料占机体重量百分比,四代机,我国J10的复合材料用量占结构重量的6%,正在研发的J11B用量提高到了9%,战斗机复合材料用量储备达到了20%以上,航空,结构功能一体化美国于1988年相继公布了“F-117A”隐身战斗机和“B-2”隐身轰炸机研制成功的信息;1990年披露了“AGM-129A”先进隐身巡航导弹已经进行试飞;1993年公布了“海影号”隐身战舰试航的消息;同时指出:“对各军兵种来说,拥有一种隐身武器,可能与五十年代拥有一种和能力具有同样的重要性”美国第四代先进战术战斗机“F-22”已经装备部队,该机实现了隐身、速度和机动性的高度统一,其雷达散射截面仅为0.05m2,比“F-15”下降了100倍以上,航空,在这些隐身飞行器上无一例外地大量采用了复合材料。如“B-2”机身结构,除主梁和发动机采用钛合金外,其余皆由碳纤维和石墨纤维等复合材料构成;“F-22”前机身复合材料用量占50%、中机身占30%,机翼占38%,比例相当可观。这是对飞行器隐身、结构重量、特殊外形的制造等各方面要求综合考虑的结果。值得注意的是,在“B-2”和“F-22”飞机上采用了结构新型吸波材料。它由具有不同电磁特性和力学性能的树脂基体、增强纤维、吸收剂和特种蜂窝芯材所组成。该结构的最外层具有良好的透波性能,而底层为全反射层,以阻止雷达波束进入机(弹)体内部,中间层为经过阻抗匹配设计的吸收损耗层,包括特种蜂窝芯材,在蜂窝空格中可以填充吸波材料,对雷达波起到“透”、“吸”、“散”的作用。该结构型吸波材料能够吸收较宽频带的雷达波,同时具有良好的力学性能,是一种多功能材料,F-117材料应用情况,PEEK-聚醚醚酮,F-22材料应用情况,25%(24%为热固性树脂复合材料,1%为热塑性树脂复合材料,几乎覆盖了飞机的全部外表面),B-2材料应用情况,大型民机,第一阶段:受力很小的构件:前缘、口盖、整流罩、扰流板等,该阶段约于70年代中期结束第二阶段:受力较小的部件:升降舵、方向舵、襟副翼等。1975年NASA开始执行ACEE计划(飞机节能计划):减重、节油、增加商载。该阶段约于80年代初结束第三阶段:受力较大的部件:平尾、垂尾仍在ACEE计划下执行,该阶段约于85年前后完成第四阶段:在生产型飞机上正式设计应用,大型民机,大型民机,大型民机,大型民机,波音:B777:共用复合材料9.9吨,占结构总重的11%B7E7:(Sonic cruiser):拟采用60%空中客车A320、321、322:15%A380:25%,32吨支线客机和公务机:10-20%,大型民机,Boeing-777,7E7(Boeing 787),7E7客机将是第一架包括机翼和机身在内大部分主体结构由复合材料制成的商用喷气式客机项目专家说,改用复合材料这一飞机设计的重大变革可能会给全球的铝工业带来沉重打击 波音民机集团副总裁迈克拜尔(Mike Bair):“复合材料为我们提供了多种优势,如耐用性更强、维修率更低,而且未来具有极大的研发潜力,我们相信,随着人类飞行进入第二个世纪,这一选择将帮助波音在采用现代化的材料技术方面,占据优势地位”,China,大型民机,欧洲Airbus-A380双层,500-650人,2004首飞,2006交付中央翼盒、部分外翼、机身上蒙皮壁板、地板梁、后隔板框、垂尾、平尾等使用复合材料仅碳纤维复合材料用量可达32吨左右,加上其他各种复合材料,估计总用量在25%左右开创大型民机大量使用复合材料的先河超混杂复合材料Glare大量采用(耐疲劳)热塑性复合材料(机翼前缘)复合材料焊接技术,大型民机,大型民机,Airbus-A380,超混杂纤维增强复合材料Glare是玻璃纤维增强铝合金层板,与以前发展的芳纶纤维增强铝合金层板ARALL相比,除成本较低外,还具有极好的双轴向承载和适于机身的疲劳性能,大型民机,轻型飞机、通用航空(70-90%),小型民机又称轻型飞机,一般乘员不超过9人,该类飞机用复合材料量最大,有许多全复合材料飞机(90%以上),如Lear Fan2100、AVTEK400、Lancair320、Starship 1、Voyager等其中Starship 1(星舟1号)是第一个获得FAA合格证的全复合材料飞机,Voyager(旅游者号)于1986年创下了不加油,不着陆连续环球飞行9天、40252km的世界纪录通用航空是指除军用航空和民用运输航空以外,为国民经济各行各业服务的所有航空活动的总称,该领域多与轻型飞机相关,在我国具有较大的发展空间,Voyager,直升机(50-80%中国:50%),包括军用直升机、民用直升机和轻型直升机,在各种直升机上先进复合材料的用量均较大,超过军机、民机的用量美国有ACAP(Advanced Composite Application Plan)计划。在此计划下研制了H360,S-75,BK-117、V-22等均大量应用了复合材料典型的V-22,可垂直起落、倾转旋翼后又能高速巡航,用复合材料3000公斤,占结构总重的50%左右;RAH66(50%);欧洲的Tiger,虎式武装直升机用量更高达80%,直升机,直升机,直升机,台湾纬华直升机公司的ULTRASPORT系列超轻型直升机为全复合材料直升机,双座的轻达180kg,创造了当时的世界之最,无人机(50-80%,中国目标:80%),各种无人机,包括无人侦察机和无人作战飞机(UCAV-Uninhabited Combat aerial Vehicle),作为一种新型航空作战武器是当前发展研究的一个热点无人机具有低成本、轻结构、高机动、大过载、长航程、高隐身、低使用寿命、长储存寿命的鲜明技术特点,这些特点决定了其对减重有迫切的需求,从而对复合材料有迫切的需求各种无人机上复合材料的用量较有人机的要大,一般在5080%之间,有的甚至是全复合材料飞机,无人机,全球鹰(Global Hawk)、捕食者(Predator)、暗星(Dark Star)等,以色列的先锋(Pioneer)、搜索者(Searcher)等均为全复合材料无人机UCAV中的X-45A,2000年9月27日出厂、2002年5月22日首飞X-45B,将于2005年首飞,批生产时可能完全由复合材料制成(90%以上)X-47(为海军用)于2001年2月出厂,2002年交首飞,基本上为全复合材料飞机,未来-纳米碳纤维复合材料,单壁碳纳米管的弹性模量可以达到1TPa,强度达到200GPa,纳米超级结构材料,未来-纳米碳纤维复合材料,未来-纳米碳纤维复合材料,纳米管提高了LOCAAS(美国低成本自主功攻击系统)的延伸翼设计水平,飞行特性模拟显示了纳米管机翼的优势提高空中巡逻时间:12%提高了机动灵活性(“G”Loading):24%at Mach 0.3降低了燃油消耗:13%(飞行25000英尺),民用领域,民用领域,复合材料是典型的军民两用技术,民用领域的规模远远大于军用领域,以CFRP为例宇航应用:18%体育休闲用品:37%工业应用:45%,体育用品,这是一个开发较早,有稳定需求的应用领域高尔夫球拍:4000万只/年,约占总数的80%以上,“已碳化了”,其他各种球拍(网球拍、羽毛球拍等)500600万只/年,几乎独占市场钓鱼杆:1200万只/年,约占总数的50%以上自行车:12万辆/年其他:赛艇、赛车、弓箭、滑雪板、杆等等。前4项约占CF耗量的85%左右,其他只占15%左右我国的台湾有“复合材料体育用品王国”之称,但近年来已向大陆转移。台湾碳纤维约有3000吨/年的产能,体育用品,体育用品,基础设施,基础设施(Infrastructure)系指建筑领域的房屋、桥梁、隧道、涵洞、地铁及其相关的混凝土工程,其修复、更新、加固已构成复合材料目前极重要的应用领域,基础设施,复合材料在建筑和基础设施应用中有很大潜力,复合材料为主体的建筑具有抗震、耐蚀、轻质、隔音、隔热等特点。事实证明水泥基复合材料和高性能复合材料代替传统的钢筋,在建筑业是性能优异的新材料,特别是在应用于桥墩、水坝、大型建筑、桥梁等大型基础设施的修复等方面,显示出有极大的竞争性,其优越性在日本神户和美国洛山矶的地震中得到证实,施工质量好而且费用低采用复合材料研制高速公路桥面台板是经过大量试验,包括静强度、疲劳强度评定后选择的,它具有良好的耐候性、韧性和抗恶劣环境的能力。随着生产规模的不断扩大,价格下降给复合材料的广泛应用创造了有利条件。复合材料在建筑工业的应用中三个动向:复合材料代替钢筋、代替木质型材、在桥梁或基础设施方面的应用,基础设施,汽车与交通,在交通运输工业方面,复合材料已经成功地应用于汽车结构件、纤维增强高速公路路面及配套设备、铁路牵引机车和车辆、舰船壳体和辅助构件、高性能自行车等领域,并且需求量越来越大汽车材料是汽车工业发展的重要基础之一,材料和汽车的制造成本密切相关,也对汽车整体性能的提高有重要的影响,先进复合材料可以大幅度提高汽车性能和节约能源,在未来5年中先进复合材料汽车将大规摸占领市场,汽车与交通,复合材料可用做传动轴、框架和车身部件、弹簧片、储能飞轮以及液化石油气容器。1995年美国汽车工业使用的各种复合材料近4.5万吨,西方汽车制造业正日益广泛地利用复合材料。增强剂主要是玻璃纤维,其次是碳纤维,而基体材料美国主要使用热固性树脂,而欧洲则多采用热塑性树脂。美国的达纳公司已成功地将碳纤维复合材料用作传动轴,每年生产50万根,碳纤维用量约250吨,汽车与交通,克林顿政府提出的“超级汽车”要求轻质底盘和框架,以便使车辆百公里耗油量减至3升;发展电动汽车也要求轻质结构,先进复合材料可以满足这些要求通用汽车公司已有多年制造汽车和卡车复合材料弹簧的经验,该公司利用连续的E玻璃纤维增强环氧树脂,采用一种改进的缠绕工艺制造复合材料弹簧,每年纤维用量近5000吨。在全电动或电动/天然气混合车辆中,用作储能装置的超高速飞轮转子需要高比强度纤维,高强度碳纤维是最好的候选材料。天然气是高效清洁燃料,复合材料很适合用于制造压缩天然气容器,High performance cars,The use of carbon fibre/polymer composites can result in weight savings of 7580%compared to steel,3040%compared to aluminium,and 50%compared to chopped fibre-glass reinforced composite.,High performance cars,High performance cars,赛车代表了汽车发展方向和未来将要采用的技术据估计,当碳纤维的市场价格降至11$/kg时,CFRP 将会在汽车行业大量使用,目前据这一目标还有近一倍的差距目前又反弹了,海洋石油工业,充分发挥复合材料高耐腐蚀性的优势管道系统、油罐、油箱、围栏、扶手、通道、坚井、抽油杆等,海洋石油工业,今后十年内复合材料在近海石油工业中的应用将达到130亿美元。复合材料结构与钢结构相比,不仅本身造价低廉,而且安装费也便宜,其维护费用更低。例如,将复合材料用于新型中等规模的近海石油钻井平台上某些设施,其费用较传统材料可节省50%左右。典型的应用是用复合材料代替钢材用作钻井平台的水箱,复合材料气瓶与贮罐,新能源工业,在21世纪内地球将面临陆地资源逐渐枯竭,进而导致能源危机和原材料的短缺,开发新能源是人类面临的生死存亡的问题复合材料已经用于大量的新能源开发中复合材料的风力发电机的叶片和塔身太阳能发电的支架核电的离心机转子同时复合材料也是节约能源的最为有效的手段轻质结构高材料利用效率可修补和回收,电子信息领域,二十一世纪复合材料在信息技术领域也将占有很重要的地位导热系数高、热膨胀系数可设计匹配的电路板基板抛物面天线、电器设备壳、架电磁波屏蔽罩、板光纤通信技术中的光缆保护套用于能量及功能转换的敏感元件,生物、医学领域,生物和医学先进复合材料发展速度很快,并逐步形成一个规模很大的产业,其主要应用有:人工心脏、人工肺和人工血管用复合材料;复合材料人工牙齿和骨骼;复合材料呼吸器、支架、假肢等、复合材料轮椅、拐杖、担架等 具有很高的技术附加值,其每公斤达1200-15000美元,远高于宇航材料,而建筑材料仅为0.1-1.2美元,宇航材料也仅100-1200美元近10年来其产业以15-20%以上的年增长率持续增长,其发展态势已可以与信息和汽车产业在世界经济中的地位相比,并将发展成本世纪世界经济的一个支柱性产业,哈工大复合材料力学研究,探讨和利用力学新理论和新方法,20世纪80年代 20世纪90年代 进入21世纪,解决国防、航空航天复合材料等新材料和结构中的力学问题,结合服役环境特殊性和材料对象的复杂性,发展新的力学理论和方法、新材料制备研究,面向国防、航空航天,强调力学与材料学多学科高度融合,开展先进复合材料及结构研究,固体力学与复合材料,固体力学其传统的兴趣中心已从结构分析转移到发展更加符合实际的材料本构关系和更加有效而精确的计算材料科学由于本身发展的需要,要求固体力学在微结构(Microstructure)的水平上来研究材料的行为.通过研究微结构的变形、损伤和破坏对材料宏观性能的影响来指出改进材料的方向和途径与其它材料相比,复合材料对固体力学的这种需求显得更为迫切,固体力学与复合材料,固体力学工作者对自己提出的要求是同时具备理论、实验和计算机计算的三个方面的本领,才能应付复合材料发展中所提出的问题.这些问题各向异性、多相性,内部微结构及其损伤的随机性,损伤模式的多样性和损伤材料的离散性,对环境影响的敏感性,材料的可设计性,性能对制造工艺的依赖性(残余应力,界面结合的影响等等),复合材料力学性能的研究,常规实验以提供材料性能数据方面,复合材料虽然也有与金属材料基本相似的特点,但各向异性和非均匀性问题复合材料的力学性能的特点之一,就是它易于受到损伤.其中有些损伤是在固化或复合过程中在增强物,基体或界面上由于机械的,物理的或化学的原因引起的,还有一些是在受到载荷之后引起的在正交铺设的层板中,90“层早在极限载荷的30%左右时就出现了横向裂纹.这种局部损伤是不可避免的,问题在于如何认识它,表征它,控制它的发展,并预预测其演化过程和相应的剩余强度和寿命损伤还可以是环境引起的,如有害气体和水蒸汽的侵人基体而损害界面,暴露在高温、核辐照或强激光下会使复合材料性能迅速蜕变,残余应力的存在也可以加速损伤的发展,上述因素之间的耦合作用对性能影响也是不能忽视的,