欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数量化金融和投资策略.ppt

    • 资源ID:2842304       资源大小:1.98MB        全文页数:74页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数量化金融和投资策略.ppt

    ,李志勇,数量化金融和投资策略,1,内容,第一部分:数量化金融及其应用第二部分:数量化投资和交易策略在股市中的应用,2,第一部分:数量化金融及其应用,什么是数量化金融?数量化金融发展简史应用举例数量化金融的现状数量化金融的真正地位,3,什么是数量化金融?,数量化金融是现代金融学的一个分支,它大量采用数学模型和方法,用于研究、分析、交易、投资和风险控制中。也被称作金融工程、数学金融、或者计算金融等。,4,金融、数学和计算机科学的交叉学科,金融:宏观和微观经济,公司财务,资本市场,投资理论,投资组合理论,资产定价,银行业,风险控制数学:实分析,函数分析,概率论,随机过程,随机计算,微分方程,数值分析,概率分布,时间序列,模式识别,极值理论,博弈论计算机科学:算法,数据结构,数据库,编程语言(C+,VB,Java,C#,Matlab,SAS),操作系统由技术上的领先来推动,5,数量化金融发展简史,1827 Brown:发现了布朗运动。1900 Bachelier:第一次用BM来描述股票价格走向。1905 Einstein:系统地阐述了BM的物理学基础。1923 Wiener:对BM进行了严格的数学描述,以此完善了数量化金融的必要工具。1950s Samuelson:重新发现了Bachelier的工作,并为期权定价奠定基础。1951 Ito:发现了Itos Lemma,用以描述微分方程中随机变量之间的关系。1952 Markowitz:第一次提出了用于投资组合选择的数量方法。1963 Sharpe:发展了定价有风险资产的简单模型,CAPM。1966 Fama:认定股票价格不可预测,并提出“市场有效论”假说。1973 Black,Sholes and Merton:此三位经济学家发现了用于期权定价的Black-Scholes 公式。这几乎与芝加哥期权交易市场开业是在同一时间。,6,数量化金融发展简史(续),1974 Merton:提出了用公司资产为标的期权模型,以此来估算公司的价值。1977 Vasicek:提出了一致的市场利率模型框架。1979 Cox,Ross,Rubinstein:发现了二叉树模型,并将期权定价理论解释得普通大众也可以接受。1979 81 Harrison,Kreps,Pliska:阐述了期权定价理论和概率论之间的关系,从此数量化金融变成了严格意思上的科学。1986 Ho and Lee:引入了利率模型中的符值与校准的概念。1992 Heath,Jarrow and Morton:对利率曲线的动态特性进行了建模。1997 Brace,Gatarek and Musiela:BGM 模型。2000 Li:提出了基于概率理论的,用于CDO等复杂产品定价的方法。2002 Hagan,Kumar,Lesniewski,Woodwad:SABR(stochastic,alpha,beta,and rho)是描述远期利率和其波动性(这二者都是随机过程)的模型。,7,对很多人来说过于复杂,8,障碍期权:Up-and-Out call,x 标的,B 障碍,K 行权价,=T-t,9,但有了好的工具会容易很多,10,用C+进行期权建模,11,应用:金融资产定价,市场:股市,固定收益,信贷,外汇,大宗商品 产品:期货:股票,债券,大宗商品,外汇,VIX远期期权:欧式,美式,百慕大,亚式,障碍,二进式,复合,回看,平均,选择,延后支付,梯形,彩虹掉期:利率,信贷,全回报,股票,方差,波动率掉期期权混合:可转债,与股票相连的结构化产品资产抵押:Pass-thru,IO,PO按揭抵押:CDO,CMO,指数(iTraxx,CDX)结构化产品:股票,固定收益,信贷,外汇更多,12,应用:交易和套利策略,股票:算法交易,高频交易,股指期货套利,波动性分散,多/空策略,市场中性,并购套利期权:covered call,naked put,straddle,strangle,butterfly,bull spread,bear spread,calendar spread,vertical spread,debit spread,credit spread利率:yield shift,steepening,flatting,twist,inter-market spread,futures basis,swap spread,spread between municipal bond and treasury,carry trade,break-even inflation,TED spread trade信贷:yield enhancement,credit spread widen/narrow,credit pair相关性:CDX,tranches波动性:做多/空波动性混合:可转债套利其它:基于特定事件的,多策略,全球宏观,13,应用:风险管理,市场风险和信用风险价格敏感度计算:Delta,Gamma,Vega,Rho,Theta,etc.在险价值(Value-at-Risk)极端情况分析市场崩溃可能性分析投资组合的跟踪误差,14,应用:利率曲线建模,利率曲线:曲线符值,单因子模型,多因子模型,无套利模型,平衡模型,Libor 市场模型:Ho-LeeVasicekCox-Ingersoll-RossHJM(Heath,Jarrow,Morton)BGMLMM,15,应用:波动性建模,波动率弯线和平面 随机波动率不可确定参数波动性的经验分析自回归条件异方差(GARCH,Robert F.Engle and Clive Granger)模型,16,应用:其它金融市场建模和分析,资产价格跳跃 更加合理的资产价格和回报率概率分布模型静态对冲和动态对冲市场崩溃建模股票红利建模流通性差的市场交易成本建模,17,数量化金融学报,Agent-based modeling Anomalies in prices Asset-liability modeling Behavioral finance Bounded rationality Corporate finance Corporate valuation Derivatives pricing and hedging Evolutionary game theory Experimental finance Extreme risks and insurance Financial econometrics Financial engineering Learning adaptation Liquidity modeling Market dynamics and prediction Market microstructure Operational risk modeling Portfolio management Price formation Risk management Trading systems Web-based financial services,18,举例:期权套利,你是一位期权交易员。某天你发现市场上有这样的报价:一个 at-the-money 欧式 call option:行权价$100,到期6个月,价格$8相同行权价和到期的put option 价格$6标的股票不分红6个月的,无票面利率的,面值100的国债价格97这中间有没有问题?如果有的话,你会怎么做?,19,举例:股票结构化产品定价,你是一位基金经理。假设当前SP500 指数(SPX)是1,300点。你预计市场的波动会很大,但不确定会往哪个方向变动。为了在市场向上和向下的时候你都能够有一定的收益,你联系一家券商的股票产品部。在经过商议后,你决定从他们那里购买一个结构化产品。这个产品有如下结构:从现在开始的180天之内,如果SPX的波动维持在当前点位的82%和118%之间,那么在180天后到期时,券商付给你一笔钱。这笔钱是按下列公式计算|180天后的SPX点位 SPX当前点位|/SPX当前点位*面值(10,000,000)*系数(250)但是,如果SPX点位一旦超出这个范围,那么这个产品就自动无效。现在,你需要知道这个产品的合理价格?,20,举例:市场风险估算和管理,你是一家投资银行的风险控制总监。某天你在检查公司的交易仓位时,你发现公司持有下列仓位:$5亿各种股票,2亿各种期权$20亿公司债$25亿利率掉期$3亿的英镑、日元、欧元等外汇现期其它非常复杂的结构化产品 综合从市场和研究部得到的信息,你认为在未来的10天内股票市场会大幅下挫,信贷市场会恶化,Libor曲线平坦化,美元对其它主要货币会大幅升值。考虑这些市场因素,你非常担心如果不采取措施的话,公司的仓位会遭受巨大损失。在风暴过后,公司能不能存活还是个问题。这事关公司生死存亡,所以你需要立刻知道公司仓位的精确在险价值是多大!,21,举例:投资组合优化,你是一位资产管理公司的投资经理。你为几位高端客户理财。一位前企业家是你的客户。他在给你说明了他承受风险的能力后,希望他的投资能够在未来的10年内以10%到15%的年回报率增长。同时,他和你一起选择了50支可以包括在他的投资组合里的股票。为了构建这个投资组合,你根据1993年1月至2007年12月15年间的市场数据计算出这50支股票的期望收益、方差、和协方差等数值。在使用了优化算法并考虑美国国债对总体投资的影响后,你找到了理想的投资组合。在这个基础上,你会每个月对此组合进行调整,以保证客户的投资目标。,22,数量化金融的现状,在发达市场非常成熟和流行:对冲基金:Renaissance Technology,Citedal,AQR,GSAM Alpha,2Sigma,etc.投资银行:庞大的数量分析研究团队,数量交易员,交易室分析员,数量风险管理师 采用数量化方法的传统基金金融工程硕士(MFE)与数量化金融有关的博士和研究方向各类证书:FRM,PRM,CQF,etc.各种学报:Mathematical Finance,Journal of Financial and Quantitative Analysis,Risk,Finance and Stochastics,Journal of Quantitative Finance,etc,in addition to JoF,JoFE明星式人物:John Hull,Paul Wilmott,Emanuel Derman,Nassim Taleb,etc.,23,数量化金融的失败案例,1987年10月美国股市大崩盘:算法交易,交易组合保险Metallgesellschaft 集团:风险管理,市场流通性长期资本管理公司:模型差错,市场流通性所罗门兄弟:风险管理Amaranth:对冲2007年夏天数量基金的重大损失:杠杆效应,极端市场情况悲剧不断上演,24,数量化金融的真正地位,支持者:市场变得越来越复杂,有太多的因素要考虑(宏观,微观,股市,利率,外汇,能源,商品等等)。如果没有完备的数学模型,就不存在严格意义上的现代金融。所以,尖端数学模型和计算机技术的应用非常重要,是我们能否在激烈的竞争中脱颖而出甚至生存的关键。反对者:金融市场归根到底是由供求关系决定的。在市场上,投资者、对冲者、投机者等等在一起买进和卖出各种金融产品。所以说这是一个由人来决定的环境,而且不是所有人都表现出理智的行为。因此,数学模型不能描述人在市场上的行为。,25,数量化金融的真正地位,只是一个工具为人们提供一个思考的框架不能单独使用,并且要谨慎处理对业务和市场的精深理解才是关键,26,数量化金融非常有趣并且有高回报性,但是,“如果你有一个好的模型和技术平台,它们会帮你累积信息,理解风险,并且快速做出决定。但是模型不可能为你做出所有的决定 如果你不能很好地理解你的模型,或者以错误的方式使用,它会反过来给你带来损害”。David Li,数量分析总监,巴克莱银行“常识高于金融模型 若不然,你会迷失在模型中”-Lyle Minton,Point Clear partner“不同的角色和组织的人需要使用不同的模型 实际上,所有的模型都是错的,但有一些是有用处的”。-Igor Hlivka,数量交易总监,Mitsubishi UFJ Securities,27,第二部分:数量化投资和交易策略在股市中的应用,数量化投资简史数量化投资理论基础数量建模、投资、交易策略如何建立数量化投资的框架数量化方法和共同基金案例分析我们是谁?我们能为你们做些什么?,28,数量化投资简史,1960-1980基本层面的研究宏观经济模型投资组合理论(Markowitz,CAPM,etc.)1990s计算机技术,数据库,非线性模型风险管理(VaR)Bayesian 方法优化技术新世纪结构化产品,金融衍生品高频交易,算法交易复杂策略(混沌理论,神经网络,模式识别),29,数量化对冲基金,约70%的对冲基金可被归为数量化基金对冲基金管理的资产大约为2万亿美元,数据来源:Credit Suisse/Tremont Hedge fund Index,30,数量化共同基金,数量化的共同基金在过去的几年里有了很大的发展。据Lippers的统计,此类基金管理的资产在2007年达到6,360亿美元,是2002年规模的3倍但因为共同基金业管理的资产达20万亿美元,所以数量基金所占的比重仍较小,只有大约3.2%大部分的策略是做多,但近年130/30的策略日趋流行,31,数量化投资的理论基础,现代金融理论均值-方差分析资产资本定价模型(CAPM)无套利定价原理(APT)数量模型数学和数值优化风险管理交易成本经济计量学技术单因子模型多因子模型,32,均值-方差分析,与两个不同的理论框架保持一致:设定假设下的功用最大化资产的回报率符合多元正态分布充分利用多样化原理,33,均值-方差分析,受限于以下约束条件:,求解:,34,资本资产定价模型(CAPM),35,无套利定价原理(APT),基于无套利原理是一种多因子的经济计量模型定义了Alpha,或者叫“主动Alpha”,也就是主动选股带来的收益例如:Fama/French五因素模型,36,数学和数值优化,金融学理论的核心在于优化:风险和收益的均衡优化问题包括三个基本要素目标函数 f(x)给定收益率的方差最小化,或者给定方差的收益率最大化一组变量:x资产组合的构成和比例一组约束条件,禁止卖空,单个资产上限5%,整股约束等等,37,数学和数值优化,线性规划(LP):在一组线性等式或者不等式的约束下最小化一个线性函数二次优划:最小化一个二次目标函数凸优化:包含子集合的优化问题,如半正定优化(SPD),二阶锥优化(SOCP),几何优化(GP),最小二乘法(LS),凸二次优化(QS)锥优化:去掉标准线性规划中的非负约束整数优化与组合优化:变量只能取整数,如二项值或者整数值,38,风险管理-风险的计算,计算方差、协方差矩阵隐含波动率指数加权移动平均(EWMA)自回归条件异方差(GARCH),39,风险的计算,在险价值(VaR)计算高阶及极端风险的测量,40,将风险分解,Barra E3 模型中风险定义,41,将风险分解,系统性风险的分解其他风险的分解:总体风险分解,积极风险分解,积极系统风险分解,等等,42,交易成本,交易的执行是投资过程中一个重要的组成部分一个糟糕的交易会直接损害投资组合的收益对于算法交易来说,交易成本是至关重要的,43,预测风险和收益 财务和经济因子,财务信息P/E P/B分红率增长等等经济因子GDP失业率领先,同时和滞后的指标信用价差能源价格汇率等等,44,预测风险和收益 统计模型,单因子模型:单个价格的动态过程:自回归移动平均模型(ARMA)ARMA(p,q)多因子模型:多个价格的动态过程及相关性向量自回归模型(VAR)VAR(p)向量自回归移动平均模型(VARMA)VARAM(p,q)协整:误差修正模型(ECM)状态空间:便于制定大量的动态过程类ARCH/GARCH 模型,45,预测风险和收益 其他模型,随机游走模型时间多样化动态模拟主成分分析多因子模型 长期均衡模型和多趋势模型Bayesian 方法:Black-Litterman 模型神经网络模型行为金融模型:解释和刻画市场中的异常现象,46,什么样的模型是好模型?,对样本有很强的解释能力对样本外结果有很强的预测能力很小的估计误差对资产价格的属性有稳定的描述能够盈利的策略,赚钱!,47,数量化交易/投资必须有纪律,Alpha 模型:产生现实、合理的收益期望和预测风险管理:控制和管理投资、交易风险控制成本:管理交易成本执行:监视并管理投资的每个步骤业绩归因分析:策略是否可行?如果可行,业绩来自于技巧还是运气?,48,例子:证券分析和挑选,49,例子:数量化建模和投资组合建立,50,例子:执行和风险管理,51,策略:风险中性,多/空策略业绩表现与市场表现无关组合beta()基本上为零大约6%的对冲基金使用此策略,数据来源:Investment Strategies of Hedge Funds,Stefanini时间:01/1994 12/2004,52,策略:成对证券价差交易,多仓价格有望上涨的证券,空仓价格有望下跌的证券一帮情况下,两个证券价格是同涨同跌的,它们价格的差距,价差,是均值回复的抓住趋势的暂时骤变并期待趋势能够反转,53,策略:统计套利,统计套利,StatArb,不是考虑成对的股票,而是成百只股票的组合beta中性,利用统计和经济计量模型恰当的模型是最重要的,54,策略:指数套利,指数期货和指数组成成份的一揽子股票组合具有相关关系如果确信价差会收敛,可以卖出期货,并买入同等价值的一揽子股票如果确信价差会扩大,可以采用相反的操作,55,策略:波动率套利,期权交易:买入低波动率,卖出高波动率Delta对冲:与标的资产的价格的直接变动无关,头寸的盈利取决于标的资产的价格的凸度波动率互换:利用将来的波动率变化,不考虑其他任何因素波动率分散:利用指数波动率和其成份一揽子股票的波动率之间的不平衡,56,策略:结构化产品,结构化产品可以针对投资者对市场的具体看法量身定制例子:双障碍敲出期权起始日:今天期限:6个月类型:期权标的:国企指数(当前为11,947)或者其他指数障碍价格:9,947 和 13,947到期回报:如果没有碰到障碍价格则:|HSCEI 11,947|,否则为:10%,57,策略:其他想法,还有许多可以做,58,数量化模型和策略的优势,一致性:相同的输入会导致相同的信号严格执行纪律,不受情绪或其它主观标准的影响可以完全自动化 可以用过去的历史数据全面测试,用模拟情景测试在低迷的市场,数量化交易模型产生的结果由于同传统的资产相关度很低,可以提供一个新的“alpha”来源,59,如何构建数量化投资框架,目标建立可靠的预测模型为投资组合分配和风险管理配置可靠的模型管理组合的调仓成本和交易成本监控并定期检查整个投资过程框架,60,股票市场研究,数量化投资中最重要的一个环节关注点:全球市场,基本面,区域/行业/板块,会计处理风格,基准,对手,其它特征分析多因子股票风险模型时间序列分析:ARMA,ARIMA,ARCH,GARCH高频数据研究历史数据回溯测试,蒙特卡罗模拟 不同资产类别和不同市场的相关性,敏感度“可转移的alpha”,多/空扩展,绝对收益以及其它投资研究,61,投资组合构建、优化和管理,按照客户的要求构建投资组合:风险,风格,质量,安全性,税收,社会责任,行业集中度,流动性等遵照投资组合,使用优化工具和技术使股票选择和权重分配精细化关注点资产配置策略投资组合优化风险约束Alpha,贝塔,夏普比率,跟踪误差分析策略:多/空策略,130/30,市场中性等,62,证券交易和执行,抽象理论研究和投资组合构建的实现,理论和实践相结合从组合构建阶段平稳有效地过渡到交易执行阶段关注以下策略:交易委托智能解决方案以寻求流动性冲击成本和交易成本最小化佣金分配vs.最佳执行执行数量化交易策略,系统和软件平滑过渡以及alpha 损失最小化,63,数量化投资过程改进,尽可能使所有任务自动化安装并监控诊断程序,是否出现问题?进程是否出错?哪里出错?明确定义进程成功的标准各个阶段之间的平稳转换和 alpha 损失最小化数据效率最大化,减小模型差错,检查所有特征管理层审核:遵循既定目标,64,数量化方法和共同基金,选股:使用数量化模型价值、动力、因子选股,例如价值和成长资产配置策略:股票、固定收益产品、外汇和大宗商品投合优化:基于限制和目标构建最优投资组合多/空策略:130/30准多/空策略:做空现有持仓股票指数追踪:模拟特定指数,最小化跟踪误差交易成本控制数量化研究投资过程自动化:充分利用技术优势,65,数量化方法和共同基金 全球视野,前10大数量化共同基金按照过去1年回报排名,66,案例:2007年夏,数量化基金的巨大损失,发生了什么?,67,案例:8月伏击,发生了什么?那些数量交易员使用复杂的数学模型投资于全球市场他们与沃伦.巴菲特和彼得.林奇等价值投资者非常不同他们使用“统计套利”,“市场中性”等交易策略历史上来看,数量交易员表现不错但是在7月末和8月初,数量交易员遭遇伏击:整个美国股市下跌4,但是Renaissance Institutional Equities slid 8.7%,AQR Captial Management 13%,Goldman Sachs Global Equity Opportunities 30%,Tykhe Capital LLC 20%,etc.他们的大部分损失出现在7/8-9/8,10天之后,部分损失得到弥补,68,案例:市场情况,发生了什么?5/8:贝尔斯登CEO辞职7/8:有传言贝尔斯登将要被出售市场流动性紧缩全球股市下跌数量化基金如何应对?降低杠杆卖掉好的,盈利的资产买回差股票市场中性多/空净多头或者只作多,69,案例:8月伏击,市场方面:随着大量的数量化基金发行和大批资金流入这些基金,盈利机会减少,迫使此类基金加大杠杆。次贷危机使得流动性紧缩基金方面:很多基金使用相似的模型和投资/交易策略,持仓结构相似这些专业人士有着相似的背景芝加哥、麻省理工、伯克力、哥伦比亚等大学毕业数学、物理、计算机专业雷同的风险模型MSCI Barra,70,案例:数量化基金能做什么?,模型多样化,人员多样化结合其它手段,比如基本面分析做好应对“黑天鹅”事件的准备,71,我们是谁?,李志勇,罗切斯特大学工商管理硕士,麻省大学电子工程硕士,大连理工大学电子工程学士。从事过投资组合分析,投资建模,金融资产定价,交易分析,和风险管理等工作。在2008年6月加入中金公司前,曾先后在美林,摩根斯丹利,瑞士银行集团等供职。李关峥,CFA,主要负责金融衍生产品定价和交易策略相关的研究。毕业于复旦大学数量经济学专业,曾任国泰君安证券衍生品分析师。李永喜,2003年清华大学会计系本科毕业,2003年8月至2005年10月就职于毕马威华振会计师事务所、2005年11月加入中金公司,任策略组研究助理。刘伟,2005年6月在南京邮电大学获得管理信息系统学士学位,2008年3月在上海交通大学获得金融工程硕士学位。于2008年4月在中金公司研究部工作,研究期货权证衍生品的投资和套利。冯汉杰,实习生,2007年获清华大学应用数学专业学士学位,现在清华大学数学科学系概率论与数理统计专业攻读硕士学位,有很强的数量分析功底。即将入职的同事中金公司其它部门强大的数量分析组(资产定价,风险管理、固定收益、衍生品,新产品开发等部门),72,我们能做什么?,市场研究:进行广泛的市场研究,从全球、行业、风格到时间序列、风险和收益预测、阿尔法获得以及高频数据分析。投资组合构建及优化:构建最优化投资组合需要考虑不同资产类别和不同行业的表现,投资者对市场趋势的判断,投资者的风险偏好以及收益预期。交易策略:使用数量方法开发、测试以及更新交易策略。为机构投资者提供全面的投资咨询:除了各项单独的服务,我们可以为客户提供全面的解决方案,从策划、策略、选股、组合优化到风险管理、表现评价以及跟踪咨询。在并不影响基金经理的投资决策地位的前提下,为基金经理提供全面的信息和另一项投资决策工具。风险管理咨询:利用我们的分析能力和技术硬件条件,为机构投资者提供风险管理咨询。客户定制服务:利用我们的专业知识和经验,公司内部各个部门的良好合作,根据客户的具体情况提供专有的数量化分析方法和创新产品。,73,问答时间,

    注意事项

    本文(数量化金融和投资策略.ppt)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开