欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    序列二次规划.ppt

    • 资源ID:2815788       资源大小:8.25MB        全文页数:151页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    序列二次规划.ppt

    二次规划 Quadratic Programming,二次规划,Questions,什么是二次规划?如何求解?,二次规划,Definition,二次规划,(*),二次规划,二次规划,Remark,二次规划,等式约束二次规划问题的解法:直接消去法(Direct Elimination Method)Lagrange乘子法,直接消去法(Direct Elimination Method),直接消去法,直接消去法,直接消去法,(*),直接消去法,直接消去法,直接消去法,Remark,直接消去法,Example,直接消去法,Solution,直接消去法,直接消去法,直接消去法,Remark,Lagrange乘子法,Lagrange乘子法,Lagrange乘子法,Lagrange乘子法,Lagrange乘子法,把c和b代入前面的最优解然后利用H R即可得。,Lagrange乘子法,Example,Lagrange乘子法,Solution,Lagrange乘子法,Lagrange乘子法,起作用集方法(Active Set Method),起作用集方法,正定二次规划,(*),定理,起作用集方法,Theorem,起作用集方法,Theorem,(*),起作用集方法,Proof,起作用集方法,(a),起作用集方法,(b),满足(a)的 肯定满足(b),且为满足(b)的 的一部分,但满足(b)的解是唯一的,所以问题(b)的解就是问题(a)的解。,起作用集方法,Remark,起作用集方法,Questions,起作用集方法,起作用集方法,(*),起作用集方法,起作用集方法,(*),起作用集方法,起作用集方法,起作用集方法,起作用集方法,Questions,如何得到(*)?,起作用集方法,Answer,起作用集方法,Questions,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,Algorithm,Algorithm,Algorithm,Algorithm,起作用集方法,起作用集方法,起作用集方法,起作用集方法,Example,起作用集方法,Solution,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,起作用集方法,序列二次规划法(Sequential Quadratic Programming),(约束拟牛顿法约束变尺度法),序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,牛顿法求方程组 的解,序列二次规划法,序列二次规划法,序列二次规划法,Remark,序列二次规划法,Remark,序列二次规划法,Example,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,用信赖域方法求解二次规划子问题:,序列二次规划法,序列二次规划法,序列二次规划法,(*),序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,(1),General Problem(GP),序列二次规划法,In constrained optimization,the general aim is to transform the problem into an easier sub-problem that can then be solved and used as the basis of an iterative process.,序列二次规划法,A characteristic of a large class of early methods is the translation of the constrained problem to a basic unconstrained problem by using a penalty function for constraints that are near or beyond the constraint boundary.In this way the constrained problem is solved using a sequence of parameterized unconstrained optimizations,which in the limit(of the sequence)converge to the constrained problem.,序列二次规划法,These methods are now considered relatively inefficient and have been replaced by methods that have focused on the solution of the Kuhn-Tucker(KT)equations.The KT equations are necessary conditions for optimality for a constrained optimization problem.,序列二次规划法,If the problem is a so-called convex programming problem,then the KT equations are both necessary and sufficient for a global solution point.,序列二次规划法,Referring to GP(1),the Kuhn-Tucker equations can be stated as,(2),序列二次规划法,The first equation describes a canceling of the gradients between the objective function and the active constraints at the solution point.For the gradients to be canceled,Lagrange multipliers are necessary to balance the deviations in magnitude of the objective function and constraint gradients.,序列二次规划法,Because only active constraints are included in this canceling operation,constraints that are not active must not be included in this operation and so are given Lagrange multipliers equal to zero.This is stated implicitly in the last two equations of Eq.(2).,序列二次规划法,The solution of the KT equations forms the Basis to many nonlinear programming algorithms.These algorithms attempt to compute the Lagrange multipliers directly.Constrained quasi-Newton methods guarantee super-linear convergence by accumulating second order information regarding the KT equations using a quasi-Newton updating procedure.,序列二次规划法,These methods are commonly referred to as Sequential Quadratic Programming(SQP)methods,since a QP sub-problem is solved at each major iteration(also known as Iterative Quadratic Programming,Recursive Quadratic Programming,and Constrained Variable Metric methods).,序列二次规划法,Sequential Quadratic Programming(SQP)A Quadratic Programming(QP)Subproblem SQP Implementation,序列二次规划法,Sequential Quadratic Programming(SQP)A Quadratic Programming(QP)Subproblem SQP Implementation,序列二次规划法,Sequential Quadratic Programming(SQP)SQP methods represent the state of the art in nonlinear programming methods.Schittkowski,for example,has implemented and tested a version that outperforms every other tested method in terms of efficiency,accuracy,and percentage of successful solutions,over a large number of test problems.,序列二次规划法,Based on the work of Biggs,Han,and Powell,the method allows you to closely mimic Newtons method for constrained optimization just as is done for unconstrained optimization.At each major iteration,an approximation is made of the Hessian of the Lagrangian function using a quasi-Newton updating method.,序列二次规划法,This is then used to generate a QP sub-problem whose solution is used to form a search direction for a line search procedure.The general method,however,is stated here.,序列二次规划法,Given the problem description in GP(1)the principal idea is the formulation of a QP sub-problem based on a quadratic approximation of the Lagrangian function.,序列二次规划法,Here you simplify Eq.(1)by assuming that bound constraints have been expressed as inequality constraints.You obtain the QP sub-problem by linearizing the nonlinear constraints.,序列二次规划法,Sequential Quadratic Programming(SQP)A Quadratic Programming(QP)Subproblem SQP Implementation,序列二次规划法,序列二次规划法,This sub-problem can be solved using any QP algorithm.The solution is used to form a new iterate,.,序列二次规划法,序列二次规划法,序列二次规划法,A nonlinearly constrained problem can often be solved in fewer iterations than an unconstrained problem using SQP.One of the reasons for this is that,because of limits on the feasible area,the optimizer can make informed decisions regarding directions of search and step length.,序列二次规划法,序列二次规划法,This was solved by an SQP implementation in 96 iterations compared to 140 for the unconstrained case.,序列二次规划法,Sequential Quadratic Programming(SQP)A Quadratic Programming(QP)Subproblem SQP Implementation,序列二次规划法,The SQP implementation consists of three main stages,which are discussed briefly in the following subsections:,Updating of the Hessian matrix of the Lagrangian function Quadratic programming problem solution Line search and merit function calculation,序列二次规划法,Updating of the Hessian matrix of the Lagrangian function Quadratic programming problem solution Line search and merit function calculation,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,Updating of the Hessian matrix of the Lagrangian function Quadratic programming problem solution Line search and merit function calculation,序列二次规划法,Updating of the Hessian matrix of the Lagrangian function Quadratic programming problem solution Line search and merit function calculation,序列二次规划法,序列二次规划法,序列二次规划法,序列二次规划法,

    注意事项

    本文(序列二次规划.ppt)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开