欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    7 隧道、地铁施工测量和竣工测量.doc

    • 资源ID:2805400       资源大小:210.50KB        全文页数:20页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    7 隧道、地铁施工测量和竣工测量.doc

    7 隧道、地铁施工测量和竣工测量我国目前拥有8600多座铁路、公路隧道,总长度约4370多公里,居世界第一。其中,铁路隧道6876座,总长3670公里,为世界第一;公路隧道总数1782座,总长704公里,是世界上公路隧道最多的国家。 我国目前最长的隧道是铁路线上的秦岭隧道,全长18.456公里。 近10年来,我国修建了不少长隧道、特长隧道以及隧道群。其中,主要有:1995年建成的成渝高速公路上的中梁山隧道,长3公里多,解决了我国长大公路隧道的通风问题;1999年通车的四川省川藏公路上二郎山隧道,长4公里多,是连接西藏与内地的重点工程;1999年通车的四川广安地区华蓥山公路隧道,长4.53公里,是我国目前已通车的最长公路隧道。2000年8月31日,我国第一长双线铁路隧道全长14.259公里的广东大瑶山隧道,经过年零个月的大规模改造,正式投入运营。 隧道测量的主要任务:在勘测设计阶段是提供选址地形图和地质填图所需的测绘资料、以及定测时将隧道线路测设在地面上,即在洞门前后标定线路中线控制桩及洞身顶部地面上的中线桩;在施工阶段是保证隧道相向开挖时,能按规定的精度正确贯通,并使建筑物的位置符合规定,不侵入建筑限界,以确保运营安全。隧道施工进度慢,往往成为控制工期的工程。为了加快施工进度,除了进、出口两个开挖面外,还常采用横洞、斜井、竖井、平行导坑等来增加开挖面。因此,不管是直线隧道还是曲线隧道,开挖总是沿线路中线不断向洞内延伸,洞内线路中线位置测设的误差,就逐步随着开挖的延伸而逐渐积累;另一方面,隧道施工时基本上都是采用边开挖、边衬砌的方法,等到隧道贯通时,未衬砌部分也所剩不多,故可进行中线调整的地段有限。于是,如何保证隧道在贯通时(包括横向、纵向、高程方向),两相向开挖施工中线的相对错位不超过规定的限值,是隧道施工测量的关键问题。其中横向贯通误差(在平面上垂直于线路中线方向)的大小,直接影响隧道的施工质量,严重者甚至会导致隧道报废。所以一般说贯通误差,主要是指隧道的横向贯通误差。为确保隧道的正确贯通,必须制定正确的贯通测量方案并进行精度预计,该部分内容参阅“10 贯通工程方案设计及误差预计”。勘测设计阶段的测量工作比较简单,前面已作过介绍,本章主要介绍隧道、地铁施工测量和竣工测量。7.1 隧道施工测量7.1.1 隧道进洞测量隧道的设计位置,一般在定测时已初步标定在地表面上。在施工之前先进行复测,检查并确认各洞口的中线控制桩,当隧道位于直线上时,两端洞口应各确定一个中线控制桩,以两桩连线作为隧道洞内的中线;当隧道位于曲线上时,应在两端洞口的切线L各确认两个控制桩,两桩间距应大于200m。以控制桩所形成的两条切线的交角和曲线要素为准,来测定洞内中线的位置。由于定测时测定的转向角、曲线要素的精度及直线控制桩方向的精度较低,满足不了隧道贯通精度的要求,所以施工之前要进行洞外控制测量。洞外控制测量的作用,是在隧道各开挖口之间建立一精密的控制网,以便根据它进行隧道的洞内控制测量或中线测量,保证隧道的准确贯通。洞外控制测量包括平面控制测量和高程控制测量。洞外平面控制测量常用的方法有:中线法、精密导线法、三角测量、三边测量、边角测量或综合使用,此外还可以来用GPS测量。1. 中线法所谓中线法,就是将隧道线路中线的平面位置,按定测的方法先测设在地表上,经反复核对无误后,才能把地表控制点确定下来,施工时就以这些控制点为准,将中线引入洞内。一般在直线隧道短于1000m,曲线隧道短于500m时,可以来用中线作为控制。如图7-1所示,A、C、D、B作为在A、B之间修建隧道定测时所定中线上的直线转点。由于定测精度较低,在施工之前耍进行复测,其方法为:以A、B作为隧道方向控制点。将经纬仪安旨在C点上,后视A点,正倒镜分中定出D;再置镜D点,正倒镜分中定出B点。若B与B不重合,可量出BB的距离,则图7-1 中线法示意图 (7-1)自D点沿垂直于线路中线方向量出DD定出D点,同法亦可定出C点。然后再将经纬仪分别安在C、D点上复核,证明该两点位于于直线AB的连线上时,即可将它们固定下来,作为中线进洞的方向。若用于曲线隧道,则应首先精确标出两切线方向,然后精确测出转向角。将切线长度正确地标定在地表上,以切线上的控制点为准,将中线引入洞内。中线法简单、直观,但其精度不太高。2. 精密导线法导线法比较灵活、方便,对地形的适应件比较大。目前在全站仪已经普及的情况下,导线法不失为隧道洞外控制形式的良好方案之一。精密导线应组成多边形闭合环。它可以是独立闭合导线,也可以与国家三角点相连。导线水平角的观测,应以总测回数的奇数测回和偶数测回,分别观测导线前进方向的左角和有角,以检查测角错误;将它们换算为左角或右角后再取平均值,以提高测角精度。为了增加检核条件和提高测角精度评定的可行性和可靠性,导线环的个数不宜太少,最少不应少于4个;每个环的边数不宜太多。一般以46条边为宜。在进行导线边长丈量时,应尽量接近于测距的最佳测程,边长不应短于300m;导线尽量以直伸形式布设,减少转折角的个数,以减弱边长误差和测角误差对隧道横向贯通误差的影响。导线的测角中误差按下式汁算,并应满足测量设计的精度要求: (7-2)式中 f附合导线或闭合导线环的方位角闭合差();n计算时f的测站数;N附合导线或闭合导线环的个数。3.三角测量三角测量的方向控制较中线法、导线法都高,如果仅从横向贯通精度的观点考虑,则它是最理想的隧道平面控制方法。三角测量除采用测角三角锁外,还可采用边角网和三边网。但从精度、可靠性、工作量、经济方面综合考虑,以测角三角锁为好。三角锁一般布置一条高精度的基线作为起始边。并在三角锁另一端增设一条基线,以资检核;其余仅只有测角工作,按正弦定理推算边长,经过平差计算可求得三角点和隧道轴线上控制点的坐标,然后以控制点为依据,确定进洞方向。4. 三角锁和导线联合控制这种方法只有在受到特殊地形条件限制时才考虑,一般不宜采用。如隧道在城市附近,三角锁的中部遇到较密集的建筑群,这时使用导线穿过建筑群与两端的三角锁相连结。 用于隧道施工控制测量的三角锁或导线环,在布设中除了前面所述要求之外,还应注意以下几点:1)使三角锁或导线环的方向,尽量垂直于贯通面,以减弱测角误差对横向贯通精度的影响。2)尽量选择长边,减少三角形个数或导线边数,以减弱测角误差对横向贯通精度的影响。3)每一洞口附近测设不少于三个平面控制点(包括洞口投点及其相联系的三角点或导线点),作为引线入洞的依据,并尽量将其纳入主网中,以加强点位稳定性和入洞方向的校核。4)三角锁的起始边如果只有一条,则应尽量布设于三角锁中部;如果有两条。则应使其位于三角锁两端,这样不仅利于洞口插网,而且可以减弱三角网测量误差对横向贯通精度的影响。5)三角锁中若要增列基线条件时,应将基线设于锁段两端,但此时起始边的测量精度应满足下列要求否则,不应加入基线条件。5. GPS测量1957年10月世界上第一颗人造地球卫星的发射成功,是人类致力于现代科学技术发展的结晶,它使空间科学技术的发展迅速进入了一个崭新的时代。近五十年来,人造地球卫星技术在军事、通讯、气象、资源勘察、导航、遥感、大地测量、地球动力学、天文等众多学科领域得到极其广泛的应用,从而推动了科学技术的迅猛发展,也丰富了人类的科学文化生活。为了满足军事部门和民用部门对连续实时和三维导航的迫切要求,1973年美国国防部正式开始组织海陆空三军,共同研究建立新一代卫星导航系统的计划。这就是许多文献中所称的“授时与测距导航系统全球定位系统”(Navigation System Timing and Ranging/Global Positioning SystemNAVSTARGPS),而通常简称为“全球定位系统(GPS)” 。GPS的原理可参阅相关教材。由于GPS具有选点灵活、无需通视,定位精度高,观测时间短,提供三维位置和速度、自动化程度高、操作简便,不受天气条件影响、可全天候作业等特点,GPS在公共安全、大地控制测量、工程测量、变形监测、地球动力学、气象学、海平面监测、时间和频率传输、导航、军事、航空摄影测量等等领域中也得到了极为广泛的应用,正如业内人士所言,“GPS应用只受到人们想象力的限制”。例如,国家A级和B级GPS大地控制网分别于1996年和1997年建成并先后交付使用。A级网由30个点组成,平均边长为650km,水平方向重复精度优于2×10-8,垂直方向不低于7×10-8,绝对精度(相对地心)不低于±0.1m。B级网由800个点组成,平均边长为150km,水平方向重复精度优于4×10-8,垂直方向不低于8×10-8,绝对精度(相对地心)不低于±1m。国家A级和B级GPS大地控制网的建成,标志着我国具有分米级绝对精度的3维大地坐标系统已基本建成,它将为我国空间技术和空间基础数据、实时动态定位等技术提供一个精确可靠的参照系。利用GPS相对定位技术建立隧道施工控制网可采用静态定位或快速静态定位模式进行。由于利用GPS相对定位技术进行测量时,仅需要在开挖洞口附近布设控制点,无须跨越山岭布点,劳动强度小、精度高,是目前隧道控制网建立的首选方法。布设隧道GPS定位网时,应满足下列要求:1)位网由隧道各开挖口的控制点点群组成,每个开挖口至少应布测4个控制点。整个控制网应由个或若干个独立观测环组成,每个独立观测环的边数最多不越过12个,应尽可能减少。2)网的边长最长不宜超过30km,最短不宜短于300m 。3)每个控制点应有三个或三个以上的边与其连接,极个别的点才允许由二个边连接。4)GPS定位点之间一般不要求通视,但对于布设的洞口控制点,考虑到用常规测量方法进行检测、加密或恢复的需要,要求通视。5)点位空中视野开阔,保证至少能接收到4颗卫星信号。6)点位的选择应满足GPS测量的要求,如测站附近不应有对电磁波有强烈吸收和反射影响的金属和其它物体。7)由于GPS测量获得的是WGS-84坐标系中的成果,只有将其转换为施工坐标系中的成果才能指挥生产,这就要求GPS网的部分点与施工控制网所在坐标系中的某些控制点相重合,重合点(又称坐标联测点)不能少于3个,且在网中应分布均匀,以便可靠地确定两坐标系之间的转换参数。8)为保证GPS网的精度和可靠性,GPS网可采用三角网、环型网或三角网、环型网混合图形,GPS测量方式可采用边连式或边点混连式。6. 高程控制测量洞外高程控制测量的任务,是按照设计精度施测两相向开挖洞口附近水准点之间的高差,以便将整个隧道的统一高程系统引入洞内,保证按规定精度在高程方面正确贯通,并使隧道工程在高程方面按要求的精度正确修建。高程控制的二、三等采用水准测量。四、五等可采用水准测量,当山势陡峻采用水准测量困难时,亦可采用光电测距仪三角高程的方法测定各洞口高程。每一个洞口应埋设不少于2个水准点,两水准点之间的高差,以安置一次水准仪即可测出为宜。水准测量的精度,一般参照表7-1即可。表7-1 等级水准测量的路线长度和仪器精度测量部位测量等级每公里高差中数的偶然中误差(mm)两开挖洞口间的水准路线长度(km)水准仪等级水准尺类型洞外二1.036S0.5、S1线条式因瓦水准尺三3.01336S1线条式因瓦水准尺S3区格式水准尺四5.0513S3区格式水准尺洞内二1.032S1线条式因瓦水准尺三3.01132S3区格式水准尺四5.0511S3区格式水准尺由上述各种方法比较看出,中线法控制形式最简单,但由于方向控制较差,故只能用于较短的隧道(直线隧道短于1km,曲线隧道短于500m);三角测量方法其方向控制精度最高,故在光电测距仪未广泛使用之前,是隧道控制最主要的形式,但其三角点的布设要受到地形、地物条件的限制,而且基线边要求精度高,使丈量工作复杂,平差计算工作量大;精密导线法,在光电测距仪的测程和精度不断提高的今天,由于布设简单、灵活、地形适应性强、外业工作量少,因而成为隧道控制的主要布设形式之一,只要在水平角测量时适当增加测回数,就可弥补其方向控制不如三角测量之不足。而且光电测距导线和光电测距三角高程可以同时进行,大大减少了野外工作量。由于GPS测量定位精度高、精度均匀、选点灵活、无需通视、观测时间短等特点,因而成为目前隧道控制网建立的首选方法。7.2 隧道洞外、洞内联系测量7.2.1 进洞关系的计算和进洞测量洞外控制测量完成以后,应把各洞口的线路中线控制桩和洞外控制网联系起来。由于控制网和线路中线两者的坐标系不一致,应首先把洞外控制点和中线控制桩的坐标纳入同一坐标系统内,故必须先进行坐标变换计算,得到控制点在变换后的新坐标。其坐标变换计算公式可以采用解析几何中的坐标转轴和移轴计算公式。一般在直线段以线路中线作为x轴;曲线上则以一条切线方向作为x轴。用线路中线点和控制点的坐标,反算两点的距离和方位角,从而确定进洞测量的数据。把中线引入洞内,可按下列方法进行。1.直线隧道1)移桩法如图7-2所示,洞口两端线路控制点A、B、C、D是按定测精度测设的,它们并不是严格位于同一条直线上。经精测A、B、C、D后,以A为原点,AB方向为纵轴,计算出C、D两点相应的偏离值yc、yd和角,将经纬仪分别安置在C和D上,拔角量出垂线yc和yd,即可移桩定出C和D点,再将经纬仪安置于D点,照准C即得进洞方向。当偏移量较大时,为保持原设计的线路平面位置和方向的一致性,可用洞口两端的A、D两点连线作纵轴,将B、C移至中线上。图7-2 移桩法示意图2)拔角法如图7-3,当以AD为坐标纵轴时,可根据A、B及C、D点的坐标,反算出水平角和,即可得到进洞方向。通常为了施工测量方便,亦可将B、C两点移到中线上的B、C点上。图7-3 拔角法示意图2.曲线隧道曲线隧道两端洞口的每条切线上已有两个投点的坐标在控制网中得到,如图7-4中的A、G和D、E。经坐标变换后,以A点为坐标系原点,AG的切线方向为y轴,其进洞关系的计算步骤如下:(1)坐标变换后,得到A、G、D、E各点的新坐标。根据这些新坐标反算得到AG、DE的方位角;两方位角相减得到曲线精测的转向角,它的精度较之定测角值精确,并与各点的坐标相一致。图7-4 曲线隧道进洞测量示意图(2)计算交点的坐标因为AG切线与  y轴重合或平行,故JD的x坐标为零或选定值,它是已知的,只需计算出JD的y坐标值即可。 (7-3)(3)根据精测算得的和选定的曲线半径R和缓和曲线长l0,计算出曲线要素T、L、0、p、m、x0、y0。(4)选定洞口外面一个中线控制桩的里程,使其和定测里程一致,例如选定A点。由此从A推算隧道范围内其它中线控制点的里程,到隧道另一端洞口外的中线控制点上出现断链,这是由于精测长度和定测长度不一致所致,这种里程称为隧道施工里程。(5)计算任一中线点的坐标要想在洞中测设出任一中线点的位置,必须先知道该点的施工里程,使它与曲线控制桩的施工里程相比较,才能确定该点是在直线上,还是在曲线上,并且知道该点距中线控制桩有多远。由于任一中线点的位置不同,所以计算坐标的方法也不同,现分别说明如下:(1)中线点在直线上如图7-5所示,进口洞门在一直线上,而N1点在出口端的另一直线上。在已知各点的施工里程DK进口、DKN1(不能用定测里程)的情况下,则 (7-4) (7-5)图7-5 中线点在直线上坐标计算 图7-6 中线点在缓和曲线上坐标计算(2)中线点在缓和曲线上首先计算出它们的切线坐标(计算到mm或0.1mm),然后将切线坐标转换为统一坐标。例如在图7-6中,统一坐标系的坐标轴为x、y轴;ZH端的切线坐标系为x、y轴;HZ端的切线坐标系为x、y轴。假设统一坐标系的y轴平行于x轴,则中线点N2、N3的统一坐标推算如下: (7-6) (7-7)式中 N2点的切线坐标;N3点的切线坐标。(3)中线点在圆曲线上当中线点位于圆曲线上时,最好通过圆心来计算它们的坐标。如图7-6中,N4点在圆曲线上,则圆心O的统一坐标为: (7-8)而ON4的坐标方位角为: (7-9) (7-10)按上述方法计算出测设中线点的坐标后,即可采用全站仪或RTK技术确定洞门的位置和进洞方向。可采用全站仪极坐标法时,根据控制网点的坐标,反算出两点间的距离和方位角,即可确定洞门的位置和进洞方向。如图77,H为出口洞门的设计位置,D、E为切线方向的控制点,根据D、H点坐标可以算出距离SDH及方位角DH;根据D、E坐标可以算出方位角DE,根据两方位角之差可以求得水平角。图7-7 全站仪极坐标法标定示意图图7-8 联系导线7.2.2 由洞外向洞内传递方向和坐标为了加快施工进度,隧道施工中除了进出洞口之外,还会用斜井、横洞或竖井来增加施工开挖面。为此就要经由它们布设导线,把洞外导线的方向和坐标传递给洞内导线,构成一个洞内、外统一的控制系统,这种导线称为联系导线,如图7-8。联系导线属支导线性质,其测角误差和边长误差直接影响隧道的横向贯通精度,故使用中必须多次精密测定、反复校核,确保无误。当由竖井进行联系测量时,可以采用垂准仪光学投点、陀螺经纬仪定向的方法,来传递坐标和方位。7.2.3 由洞外向洞内传递高程图 7-9经由斜井或横洞向洞内传递高程时,一般均采用往返水准测量,当高差较差合限时取平均值的方法。由于斜井坡度较陡,视线很短,测站很多,加之照明条件差,故误差积累较大,每隔10站左右应在斜井边脚设一临时水准点,以便往返测量时校核。近年来用光电测距三角高程测量的方法来传递高程,已得到愈来愈广泛的应用,大大提高了工作效率,但应注意洞中温度的影响,以及应采用对向观测的方法。该部分的详细内容,可参阅“3.3高程联系测量”。图 7-10经由竖井传递高程时,过去一直采用悬挂钢尺的方法,即在井上悬挂一根经过检定的钢尺(或钢丝),尺零点下端挂一标准拉力的重锤,如图7-9所示,在井上、井下各安置一台水准仪,同时读取钢尺读数l1和l2,然后再读取井上、井下水准点的尺读数a、b,由此可求得井下水准点B的高程。如果在井上装配一托架,安装上光电测距仪,使照准头向下直接瞄准井底的反光镜测出井深Dh,然后在井上、井下用两台水准仪,同时分别测定井上水准点A与测距仪照准头转动中心的高差(a上b上)、井下水准点B与反射镜转动中心的高差(b下-a下),即可求得井下水准点B的高程HB,如图7-10所示。用光电测距仪测井深的方法远比悬挂钢尺的方法快速、准确,尤其是对于50m以上的深井测量,更显现出其优越性。7.3 隧道洞内控制测量7.3.1 平面控制测量为了给出隧道正确的掘进方向,并保证准确贯通,应进行洞内控制测量。由于隧道洞内场地狭窄,故洞内平面控制常采用中线或导线两种形式。1. 中线形式中线形式是指洞内不设导线,用中线控制点直接进行施工放样。一般以定测精度测设出新点,测设中线点的距离和角度数据由理论坐标值反算,这种方法一般用于较短的隧道。若将上述测设的新点,再以高精度测角、量距,算出实际的新点精确点位,再和理论坐标相比较,若有差异,应将新点移到正确的中线位置上,这种方法可以用于曲线隧道500m、直线隧道1000m以上的较长隧道。2. 导线形式导线形式是指洞内控制依靠导线进行,施工放样用的正式中线点由导线测设,中线点的精度能满足局部地段施工要求即可。导线控制的方法较中线形式灵活,点位易于选择,测量工作也较简单,而且具有多种检核方法;当组成导线闭合环时,角度经过平差,还可提高点位的横向精度。导线控制方法适用于长隧道。洞内导线与洞外导线比较,具有以下特点:洞内导线是随着隧道的开挖逐渐向前延伸,故只能敷设支导线或狭长形导线环,而不可能将全部导线一次测完;导线的形状完全取决于坑道的形状;导线点的埋石顶面应比洞内地面低2030cm,上面加设护盖、填平地面,以免施工中遭受破坏。洞内导线一般常采用下列几种形式:1)单导线 半数测回测左角,半数测回测右角。2)导线环 如图7-11所示,每测一对新点,如5和5,可按两点坐标反算55的距离,然后与实地丈量的55距离比较,这样每前进一步均有检核。图7-11 导线环示意图3)主副导线环 如图7-12所示,双线为主导线,单线为副导线。副导线只测角不量距离,主导线既测角又量距离。按虚线形成第二闭合环时,主导线在3点处能以平差角传算34边的方位角;以后均仿此法形成闭合环。闭合环角度平差后,对提高导线端点的横向点位精度很有利;并可对角度测量加以检查,同时根据角度闭合差还可以评定测角精度;另一方面又节省了副导线大量的测边工作。主副导线环在洞内控制中应推广使用。图7-12 主副导线环布设图4)交叉导线 如图7-13所示,并行导线每前进一段交叉一次,每一个新点由两条路线传算坐标(如5点坐标由4和4两点传算),最后取平均值;亦可以实量55的距离,来检核5和5的坐标值。交叉导线不作角度平差。图7-13 交叉导线布设图5)旁点闭合环 如图7-14所示,A、B为旁点。旁点闭合环一般测内角,作角度平差;旁点两侧的边长,可测可不测。图7-14 旁点闭合环布设图当有平行导坑时,还可利用横通道将正洞和导坑联系起来,形成导线闭合环。无论是采用中线形式,还是采用导线形式作洞内控制,在测量时应注意以下几点:(1)每次在建立新点之前,必须检测前一个老点的稳定性,只有在确认老点没有发生变动时,才能用它来发展新点。(2)尽量形成闭合环、两条路线的坐标比较、实量距离与反算距离的比较等检查条件,以免发生错误。(3)导线应尽量布设为长边或等边,一般直线地段不短于200m,曲线地段不宜短于70m。(4)洞内丈量工具,在使用前应与洞外控制网丈量工具比长。(5)以导线形式作为洞内平面控制时,正式中线点由临近的导线点以极坐标法测设在地面上之后,应在中线点上安置经纬仪,以任何两个已知坐标的点为目标测其角度。用实测角值与坐标反算的角值比较,以检查中线点测设的正确性,如图7-15,中线点5由导线点C测设出来之后,将经纬仪安置在5点上,测出检查角和坐标反算出的角值比较。图 7-157.3.2 洞内高程测量洞内高程测量应采用水准测量或光电测距三角高程测量的方法。洞内高程应由洞外高程控制点向洞内测量传算,结合洞内施工特点,每隔200m至500m设立两个高程点以便检核;为便于施工使用,每隔100 m应在拱部边墙上设立一个水准点。采用水准测量时,应往返观测,视线长度不宜大于50m;采用光电测距三角高程测量时,应进行对向观测,注意洞内的除尘、通风排烟和水气的影响。限差要求与洞外高程测量的要求相同。洞内高程点作为施工高程的依据,必须定期复测。当隧道贯通之后,求出相向两支水准的高程贯通误差,并在未衬砌地段进行调整。所有开挖、衬砌工程应以调整后的高程指导施工。7.4 隧道洞内中线测量7.4.1 洞内中线测量隧道洞内施工,是以中线为依据来进行。当洞内敷设导线之后,导线点不一定恰好在线路中线上,更不可能恰好在隧道的结构中线上(即隧道轴线上)。而隧道衬砌后两个边墙间隔的中心即为隧道中心,在直线部分则与线路中线重合;曲线部分由于隧道衬砌断面的内外侧加宽不同,所以线路中心线就不是隧道中心线,如图7-16所示。隧道中线的测设方法有下列两种:1. 由导线测设中线用精密导线进行洞内隧道控制测量时,为便于施工,应根据导线点位的实际坐标和中线点的理论坐标,反算出距离和角度,利用极坐标法,根据导线点测设出中线点。一般直线地段150200 m;曲线地段60100m,应测设一个永久的中线点。图7-16由导线建立新的中线点之后,还应将经纬仪安置在已测设的中线点上,测出中线点之间的夹角,如图7-17所示,将实测的检查角与理论值相比较;另外实量45点的距离,亦可与理论值比较,作为另一种检核,确认无误即可挖坑埋入带金属标志的混凝土桩。图 7-172. 独立的中线法若用独立的中线法测设,在直线上应采用正倒镜分中法延伸直线;在曲线上一般采用弦线偏角法。测规要求采用独立中线法时,永久中线点间距离:直线上不小于100m,曲线上不小于50m。7.4.2 洞内临时中线的测设为了知道隧道洞内开挖方向,随着向前掘进的深入,平面测量的控制工作和中线工作也需紧随其后。当掘进的延伸长度不足一个永久中线点的间距时,应先测设临时中线点,如图7-18中的1、2等,点间距离,一般直线上不大于30m,曲线上不大于20m,临时中线点应该用仪器测设。当延伸长度大于永久中线点的间距时,就可以建立一个新的永久中线点,如图中的e。永久中线点应根据导线或用独立中线法测设,然后根据新设的永久中线点继续向前测设临时中线点。当掘进长度距最新的导线点B大于一个导线的设计边长时,就可以建立一个新的导线点C,然后根据C点继续向前测设中线点(图7-18)。当采用全断面法开挖时,导线点和永久中线点都应紧跟临时中线点。这时临时中线点要求的精度也较高。图 7-187.5 隧道施工测量隧道是边开挖、边衬砌,为保证开挖方向正确、开挖断面尺寸符合设计要求,施工测量工作必须要紧紧跟上,同时要保证测量成果的正确性。7.5.1 导坑延伸测量图 7-19当导坑从最前面一个临时中线点继续向前掘进时,在直线上延伸不超过30m,曲线上不超过20m的范围内,可采用“串线法”延伸中线。用串线法延伸中线时,应在临时中线点前或后用仪器再设置两个中线点,如图7-19中的1、2,其间距不小于5m。串线时可在这三个点上挂上垂球线,先检验三点是否在一直线上,如正确无误,可用肉眼瞄直,在工作面上给出中线位置,指导掘进方向。当串线延伸长度超过临时中线点的间距时(直线为30m、曲线为20m),则应设立一个新的临时中线点。如果用激光导向仪,将其挂在中线洞顶部来指示开挖方向,可以定出100m以外的中线点,如图7-20所示。这种方法对于直线隧道和全断面开挖的定向,既快捷又准确。图 7-20 图 7-21在曲线导坑中,常用弦线偏距法和切线支距法。弦线偏距法最方便,如图7-21所示,A、B为曲线上已定出的两个临时中线点,如要向前定出新的中线点C,要求BC=AB=s,则从B沿CB方向量出长度s,同时从A量出偏距d,将两尺拉直使两长度分划相交,即可定出D点,然后在D、B方向上挂三根垂球线,用串线法指导B、C间的掘进,掘进长度超过临时中线点间距时,由B沿DB延伸方向量出距离s,即可测设出新的临时中线点C。偏距d可按下列近似公式计算 (7-11)式中 s临时中线点间距;R圆曲线半径;l0缓和曲线全长;lBB点到ZH(或HZ)的距离。图 7-227.5.2 上下导坑的联测采用上、下导坑开挖时,每前进一段距离后,上部的临时中线点和下部的临时中线点应通过漏斗联测一次,用以改正上部的中线点或向上部导坑引点。联测时,一般用长线垂球、光学垂准器、经纬仪的光学对点器等,将下导坑的中线点引到上导坑的顶板上,如图7-22所示。移设三个点之后,应复核其准确性;测量一段距离之后及筑拱前,应再引至下导坑核对,并尽早与洞口外引入的中线闭合。7.5.3隧道结构物的施工放样1. 隧道开挖断面测量在隧道施工中,为使开挖断面能较好的符合设计断面,在每次掘进前,应在开挖断面上,根据中线和轨顶高程,标出设计断面尺寸线。分部开挖的隧道在拱部和马口开挖后,全断面开挖的隧道在开挖成形后,应采用断面自动测绘仪或断面支距法测绘断面,检查断面是否符合要求;并用来确定超挖和欠挖工程数量。测量时按中线和外拱顶高程,从上至下每0.5m(拱部和曲墙)和1.0m(直墙)向左右量测支距。量支距时,应考虑到曲线隧道中心与线路中心的偏移值和施工预留宽度。仰拱断面测量,应由设计轨顶高程线每隔0.5m(自中线向左右)向下量出开挖深度。2. 结构物的施工放样在施工放样之前,应对洞内的中线点和高程点加密。中线点加密的间隔视施工需要而定,一般为510m一点,加密中线点可以铁路定测的精度测定。加密中线点的高程,均以五等水准精度测定。在衬砌之前,还应进行衬砌放样,包括立拱架测量、边墙及避车洞和仰拱的衬砌放样,洞门砌筑施工放样等一系列的测量工作。图 7-237.5.4 竣工测量隧道竣工以后,应在直线地段每50m,曲线地段每20m,或者需要加测断面处,以中线桩为准,测绘隧道的实际净空。测绘内容包括:拱顶高程、起拱线宽度、轨顶水平宽度、铺底或仰拱高程,如图7-23所示。当隧道中线统一检测闭合后,在直线上每200500m、曲线上的主点,均应埋设永久中线桩;洞内每1km应埋设一个水准点。无论中线点或水准点,均应在隧道边墙上画出标志,以便以后养护维修时使用。7.6 盾构法的施工测量工作7.6.1盾构法隧道概述1. 盾构法基本概念盾构是一种钢制活动防护装置或活动支撑,是通过软弱含水层,特别是海底、河底以及城市中心区修建隧道的一种机械。 盾构法是在地面下暗挖隧道的种施工方法。当代城市建筑、公用设施和各种交通日益繁杂,市区明挖隧道施工,对城市生活的干扰问题日趋严重,特别在市区中心遇到隧道埋深较大,地质复杂的情况,若用明挖法建造隧道则很难实现。在这种条件下采用盾构法对城市地下铁道、上下水道、电力通讯、市政公用设施等各种隧道建设具有明显优点。此外,在改造穿越水域、沼泽地和山地的公路和铁路隧道或水工隧道中,盾构法也往往因它在特定条件下的经济合理性而得到应用。构成盾构法的主要内容是:先在隧道某段的一端建造竖井或基坑,以供盾构安装就位。盾构从竖井或基坑的墙壁开孔处出发,在地层中沿着设计轴线,向另一竖井或基坑的设计孔洞推进。盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制隧道衬砌结构,再传到竖井或踏坑的后靠壁上。盾构是这种施工方法中最主要的独特的施工机具。它是一个能支承地层压力而又能在地层中推进的圆形或矩形或马蹄形等特殊形状的钢筒结构,和钢筒的前面设置各种类型的支撑和开挖土体的装置,在钢筒中段用圈内回安装顶进所需的千斤顶,钢筒尾部是具有一定空间的壳体,在盾尾内可以拼装一至二环预制的隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向紧靠盾尾后面的开挖坑道周边与衬砌环外周之间的空隙中压注足够的浆体,以防止隧道及地面下沉。在盾构推进过程中不断从开挖面排出适量的土方。使用盾构法,往往需要根据穿越土层的工程水文地质特点辅以其他施工技术措施,主要有:硫干掘进土层中地下水的措施;稳定地层、防止隧道及地面沉陷的土壤加固措施;隧道衬砌的防水堵满技术;配合施工的监测技术;气压施工中的劳动防护措施;开挖土方的运输及处理方法等。2. 盾构法的主要优点除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪音和振动影响;盾构推进、出土、拼装衬砌等主要工序循环进行,施工易于管理,施工人员也较少;土方量较少;穿越河道时不影响航运;施工不受风雨等气候条件影响;在土质差水位高的地方建设埋深较大的隧道,盾构法有较高的技术经济优越性。3. 盾构法存在的主要问题当隧道曲线半径过小时,施工较为困难;在陆地建造隧道时,如隧道覆土太浅,则盾构法施工困难很大,而在水下时,如覆土太浅则盾构法施工不够安全;盾构施工中采用全气压力法以疏干和稳定地层时,对劳动保护要求较高,施工条件差;盾构法隧道上方一定范围内的地表沉陷尚难完全防止,特别在饱和含水松软的土层中,要采取严密的技术措施才能把沉陷限制在很小的限度内;在饱和含水地层小,盾构法施工所用的拼装衬砌,对达到整体结构防水性的技术要求较高。7.6.2 盾构法的施工测量现在的盾构机都装备有先进的自动导向系统。因此,在盾构法施工过程中的测量工作主要是对盾构机自动导向系统进行姿态定位测量,以及使用测量的方法来检核自动导向系统的准确性。盾构机上的自动导向系统(以德国VMT公司的SLS-T系统为例),主要由以下四部分组成:(1)具有自动照准目标的全站仪。主要用于测量(水平和垂直的)角度和距离、发射激光束。(2)ELS(电子激光系统),亦称为标板或激光靶板(一种智能型传感器)。ELS接收全站仪发出的激光束,测定水平方向和垂直方向的入射点。坡度和旋转也由该系统内的倾斜仪测量,偏角由ELS上激光器的入射角确认。ELS固定在盾构机的机身内,在安装时要确定其相对于盾构机轴线的关系和参数。(3)计算机及隧道掘进软件。SLS-T软件是自动导向系统的核心,它从全站仪和ELS等通信设备接收数据,盾构机的位置在该软件中计算,并以数字和图形的形式显示在计算机的屏幕上。操作系统采用Windows2000,确保用户操作简便。(4)电源箱。它主要给全站仪供电,保证计算机和全站仪之间的通信和数据传输。在盾构法施工过程中,盾构的掘进的方向和位置是依据地下导线控制点确定的。导线点应随着盾构机的推进及时延伸,导线点通常建立在管片的侧面仪器台上和右上侧内外架式的吊篮上,仪器采用强制归心。为了提高地下导线点的精度,应尽量拉长两导线点间距离以减少导线点数,并尽可能布设成直伸形导线。一般两导线点的间距宜控制在150m左右。在进行盾构机自动导向系统的姿态定位时,首先在盾构机后面的导线控制点上安置带有激光器的全站仪,然后利用另一个地下导线控制点定向,测出ELS棱镜的平面坐标以及高程值。打开激光束射向ELS,ELS可以自动测定激光相对于ELS平面的偏角。在ELS入射点之间测得的折射角及入射角用于测定盾构机相对于隧道设计轴线(DTA)的偏角。坡度和旋转直接用安装在ELS内的倾斜仪测量。这个数据大约每秒钟两次传输至控制用的计算机。通过全站仪测出的与ELS之间的距离可以提供沿着DTA掘进的盾构机的里程长度。所有测得的数据由通信电缆传输至计算机,通过软件组合起来用于计算盾构机轴线上前后两个参考点的精确的空间位置,并与隧道设计轴线(DTA)比较,得出的偏差值显示在屏幕上,这就是盾构机的姿态,在推进时只要控制好姿态,盾构机就能精确地沿着隧道设计轴线掘进,保证隧道能顺利准确的贯通。在隧道推进的过程中,必须独立于SLS-T系统定期对盾构机的姿态和位置进行检查。间隔时间取决于隧道的具体情况,在有严重的光折射效应的隧道

    注意事项

    本文(7 隧道、地铁施工测量和竣工测量.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开