欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    乘法原理题库版.doc

    • 资源ID:2769153       资源大小:1.05MB        全文页数:15页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    乘法原理题库版.doc

    精选优质文档-倾情为你奉上乘法原理知识框架图7 计数综合7-2 乘法原理7-2-1简单乘法原理的应用7-2-2较复杂的乘法原理应用教学目标1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯知识要点一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了这个时候我们的乘法原理就派上上用场了二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,第n步有N种不同的方法那么完成这件事情一共有A×B××N种不同的方法结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题比如说老师举的这个例子就是个路线种类问题;2、字的染色问题比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色的方法;3、地图的染色问题同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题比如说6个同学,排成一个队伍,有多少种排法;5、数码问题就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法例题精讲模块一、简单乘法原理的应用【例 1】 邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?(2级)【解析】 把可能出现的情况全部考虑进去 第一步第二步由分析知邮递员由A村去B村是第一步,再由B村去C村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法根据乘法原理,从A村经B村去C村,共有3×2=6种方法【巩固】 如下图所示,从A地去B地有5种走法,从B地去C地有3种走法,那么李明从A地经B地去C地有多少种不同的走法?(2级)【解析】 从A地经B地去C地分为两步,由A地去B地是第一步,再由B地去C地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法根据乘法原理,从A地经B地去C地,共有5×3=15种方法【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过问:他最多有几种不同走法?(2级)【解析】 从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法【巩固】 在下图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过问:这只甲虫最多有几种不同走法?(2级)【解析】 甲虫要从A点沿着线段爬到B点,需要经过两步,第一步是从A点到C点,一共有3种走法;第二步是从C点到B点,一共也有3种走法,根据乘法原理一共有3×3=9种走法【例 3】 在右图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过问:这只甲虫最多有几种不同走法?(4级)【解析】 从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,有1种走法;第三步,从D点到B点,一共也有3种走法根据乘法原理,一共有3×1×3=9种走法【巩固】 在右图中,一只蚂蚁要从点沿着线段爬到点,要求任何点不得重复经过问:这只蚂蚁最多有几种不同走法?(4级)【解析】 解这道题时千万不要受铺垫题目的影响,第一步,A点到C点的走法是3种;第二步,从C点到D点,有1种走法;但第三步,从D点到B点的走法并不是3种,由D出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有(种)不同走法【巩固】 在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过问:这只甲虫最多有几种不同走法?(4级)【解析】 从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从点到点,一共也有3种走法;第三步,从点到点,一共也有3种走法根据乘法原理,一共有种走法【巩固】 在右图中,一只甲虫要从点沿着线段爬到点,要求任何点不得重复经过问:这只甲虫最多有几种不同走法? (6级)【解析】 解这道题时千万不要受铺垫题目的影响,点到点的走法不是3种,而是4种,点到点的走法也是4种,根据乘法原理,这只甲虫最多有种走法【例 4】 按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?(4级)【解析】 1、造一个句子必须包含三个部分,即人、交通工具、目的地 2、那么这个句子可以分成三个部分;第一个步选择人物,有三种选择;第二步选择交通工具,有三种选择;第三个步选择目的地,有三种选择 3、根据乘法原理:3×3×3=27【例 5】 题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷问:由该题库共可组成多少种不同的试卷?(4级)【解析】 从该题库每一类试卷中分三步各选一道题,每一步分别有30、40、45种选法根据乘法原理,一共有30×40×45=54000种不同的选法,所以一共可以组成54000种不同试卷【巩固】 文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级)【解析】 完成这件事需要两步:一步是从女生中选1人,有4种选法;另一步是从男生中选1人,有3种选法因此,由乘法原理,选出1男1女的方法有种 还可以用乘法的意义来理解这道题:男生有3种选法,每选定1个男生,再选1个女生,对应着4种选法,即3个男生,每个男生对应4种选女生的方法,因此选出1男1女共有种方法【巩固】 小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?(4级)【解析】 小丸子搭配服装分四步第一步选帽子,由于不戴帽子可以看作戴了顶空帽子,所以有种选法;第二步选上衣,有10种选法;第三步选裤子,有8种选法;第四步选皮鞋,有6种选法根据乘法原理,四种服装中各取一个搭配一共有种选法,所以一共可以组成2880种不同搭配【例 6】 要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?(4级)【解析】 第一步选出学习先进集体一共有6种方法,第二步选出体育先进集体一共有6种方法,第三步选出卫生先进集体一共有6种评选方法,根据乘法原理,一共有种评选方法【巩固】 从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?(4级)【解析】 第一步选出学习先进集体共有6种方法,第二步从剩下班级中选出体育先进集体共有5种方法,第三步选出卫生先进集体只剩有4种评选方法,根据乘法原理,共有6×5×4=120种评选方法【例 7】 从全班20人中选出3名学生排队,一共有多少种排法?(4级)【解析】 分三步,分别挑选第一人,第二人,第三人,分别有20,19,18种挑选法,一共有种排法【例 8】 五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目如果贝贝和妮妮不相邻,共有多少种不同的排法?(6级)【解析】 五位同学的排列方式共有5×4×3×2×1=120(种)如果将相邻的贝贝和妮妮看作一人,那么四人的排列方式共有4×3×2×1=24(种);因为贝贝和妮妮可以交换位置,所以贝贝和妮妮相邻的排列方式有24×2=48(种);贝贝和妮妮不相邻的排列方式有120-48=72(种)【巩固】 10个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?(6级)【解析】 两人相邻的情况有10种,第三个人不能与他们相邻,所以对于每一种来说,只剩6个人可选,10×6=60(种)共有60种不同的选法【例 9】 “数学”这个词的英文单词是“MATH”用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样这些颜色一共可以染出多少种不同搭配方式?(4级)【解析】 为了完成对单词“MATH”的染色,我们可以按字母次序,把这个染色过程分四步依次完成: 第1步对字母“M”染色,此时有种颜色可以选择; 第2步对字母“A”染色,由于字母“M”已经用过一种颜色,所以对字母“A”染色只有4种颜色可以选择; 第步对字母“T”染色,由于字母“M”和“A”已经用去了2种颜色,所以对字母“T”染色只剩种颜色可以选择; 第4步对字母“H”,染色,由于字母“M”、“A”和“T”已经用去了3种颜色,所以对字母“H”染色只有2种颜色可以选择由乘法原理,共可以得到种不同的染色方式【小结】下面的这棵枚举树清晰地揭示了利用乘法原理分步计数的过程:思考一下,如果不要求“每个字母染的颜色都不一样”,会有多少种不同的染色方式?每个字母都有种颜色可选,那么染色方式一共有5×5×5×5=625种染色方式【巩固】 “IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少种不同的写法?(4级)【解析】 第一步写“I”有5种方法,第二步写“M”有4种方法,第三步写“O”有3种方法,共有种方法【例 10】 “学习改变命运”这六个字要用6种不同颜色来写,现只有6种不同颜色的笔,问共有多少种不同的写法?(4级)【解析】 第一步写“学”有6种方法,第二步写“习”有5种方法,第三步写“改”有4种方法,第四步写“变”有3种方法,第五步写“命”有2种方法,第六步写“运”有1种方法,根据乘法原理,一共有种方法【巩固】 有6种不同颜色的笔,来写“学习改变命运”这六个字,要求相邻字的颜色不能相同,有多少种不同的方法?(4级)【解析】 写第一个字有6种选择,以后每写一个字,只要保证不与前一个字相同就行了,都有5种选择,所以,有种写法【巩固】 用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?(4级)【解析】 第一个字有5种写法,第二个字有4种写法,第三个字也是4种写法,同理后面的字也是4种写法,共有5×4×4×4=320种模块二、较复杂的乘法原理应用【例 11】 北京到上海之间一共有6个站,车站应该准备多少种不同的车票?(往返车票算不同的两种) (6级)【解析】 京沪线上中间六个站连北京上海两站一共有8个站,不同的车票上起点站可以有8种,相同的起点站又可以配7种不同的终点站,所以一共要准备8×7=56种不同的车票【巩固】 (难度等级 )一条线段上除了两个端点还有6个点,那么这段线段上可以有多少条线段?(6级)【解析】 将这条线段看作是京沪线,点是车站,那么,每一条线段都对应两张来回车票,所以线段的总数是56÷2=28条线段【巩固】 某次大连与庄河路线的火车,一共有6个停车点,铁路局要为这条路线准备多少种不同的车票?(6级)【解析】 不同的车票上起点站可以有6种,相同的起点站又可以配5种不同的终点站,所以一共要准备种不同的车票【巩固】 北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?(6级)【解析】 京广线上一共有12个站,其中有四个大站,卧铺车的起点可以有四种,不同的起点站都可以配11个不同的终点站,所以铁路局要准备4×11=44种不同的车票【例 12】 由数字1、2可以组成多少个两位数? 由数字1、2可以组成多少个没有重复数字的两位数?(6级)【解析】 组成两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,有2种方法根据乘法原理,由数字1、2可以组成2×2=4个两位数,即11,12,21,22组成没有重复数字的两位数要分两步来完成:第一步,确定十位上的数字,有2种方法;第二步确定个位上的数字,因为要组成没有重复数字的两位数,因此十位上用的数字个位上不能再用,因此第二步只有1种方法,由乘法原理,能组成2×1=2个两位数,即12,21【巩固】 用数字0,1,2,3,4可以组成多少个: 三位数? 没有重复数字的三位数?(6级)【解析】 组成三位数可分三步完成第一步,确定百位上的数字,因为百位不能为0,所以只有4种选 也分三步完成第一步,百位上有4种选择;第二步确定十位,除了百位上已使用的数字不能用,其他四个数字都可以,所以有4种方法;第三步确定个位,除了百位和十位上已使用过的数字,还有3种选择根据乘法原理,可以组成个没有重复数字的三位数【巩固】 由3、6、9这3个数字可以组成多少个没有重复数字的三位数? 由3、6、9这3个数字可以组成多少个三位数?(6级)【解析】 分三步完成:第一步排百位上的数,有3种方法;第二步排十位上的数,有2种方法;第三步,排个位上的数,有1种方法,由乘法原理,3、6、9这3个数字可以组成个没有重复数字的三位数分三步完成,即分别排百位、十位、个位上的数字,每步有3种方法,由乘法原理,由3、6、9这3个数字一共可以组成个三位数【例 13】 有五张卡,分别写有数字1、2、4、5、8现从中取出3张卡片,并排放在一起,组成一个三位数,问:可以组成多少个不同的偶数?(6级)【解析】 分三步取出卡片首先因为组成的三位数是偶数,个位数字只能是偶数,所以先选取最右边的也就是个位数位置上的卡片,有2、4、8三种不同的选择;第二步在其余的4张卡片中任取一张,放在最左边的位置上,也就是百位数的位置上,有4种不同的选法;最后从剩下的3张卡片中选取一张,放在中间十位数的位置上,有3种不同的选择根据乘法原理,可以组成3×4×3=36个不同的三位偶数【例 14】 有5张卡,分别写有数字2,3,4,5,6如果允许6可以作9用,那么从中任意取出3张卡片,并排放在一起问 可以组成多少个不同的三位数? 可以组成多少个不同的三位偶数?(6级)【解析】 先考虑6只能当6的情况最后总的个数只要在这个基础上乘以2就可以了,分三步取出卡片: 第一步确定百位,有5种选择;第二步确定十位,除了百位上已使用的数字不能用,其他4个数字都可以,所以有4种方法;第三步确定个位,除了百位和十位上已使用过的数字,还有3种选择根据乘法原理,考虑6可以当作9,可以组成(个)不同的三位数 先考虑6只能当6的情况,分三步取出卡片首先因为组成的三位数是偶数,个位数字只能是偶数,所以先选取最右边的也就是个位数位置上的卡片,有2、4、6三种不同的选择;第二步在其余的4张卡片中任取一张,放在十位数的位置上,有4种不同的选法;最后从剩下的3张卡片中选取一张,放在百位数的位置上,有3种不同的选择根据乘法原理,6只是6时,可以组成(个)不同的三位偶数这时候算所求的三位偶数并不是简单乘以2就可以的,因为如果个位是6的话变成9就不再是偶数,多乘的还需要减去,个位是6一共有(个)不同的三位偶数,所以,可以组成(个)不同的三位偶数【例 15】 用1、2、3这三个数字可以组成多少个不同的三位数?如果按从小到大的顺序排列,213是第几个数?(6级)【解析】 排百位、十位、个位依次有3种、2种、1种方法,故一共有3×2×1=6(种)方法,即可以组成6个不同三位数.它们依次为123,132,213,231,312,321故213是第3个数【巩固】 有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字和等于12.将所有这样的四位数从小到大依次排列,第35个为 (6级)【解析】 4个互不相同且不为0的数字之和等于12,只有两种可能:1+2+3+6或者1+2+4+5根据乘法原理,每种情况可组成4×3×2×1=24个不同的四位数,一共可组成48个不同的四位数要求从小到大排列的第35个数,即求从大到小排列的第14个数我们从千位最大的数开始往下数:千位最大可以取6,而千位是6的数共有3×2=6个;接下来是5,千位为5的数也有6个所以第13个数应为4521,第14个是4512,答案为4512【例 16】 将1332,332,32,2这四个数的10个数码一个一个的划掉,要求先划位数最多的数的最小数码,共有多少种不同的划法?(8级)【解析】 从小到大一步一步的分步划,遇到出现岔路的情况分类考虑从位数最多的1332开始:划掉1332中的1,剩下332,332,32,2四个数;划掉位数最多的332中的2,有2种不同的顺序,划掉后剩下33,33,32,2四个数;划掉32中的2,剩下33,33,3,2;两个33中,各划掉一个3,有4×2=8种划掉的顺序,之后剩下3,3,3,2四个数;划掉2后,剩下3,3,3,有3×2=6种划掉的顺序根据乘法原理,共有不同的划法:2×8×6=96种【巩固】 一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数,例如:532吃掉311,123吃掉123,但726与267相互都不被吃掉问:能吃掉678的三位数共有多少个?(6级)【解析】 即求百位数不小于6,十位数不小于7,个位不小于8的自然数百位数不小于6,有4种;十位数不小于7,有3种;个位不小于8,有2种由乘法原理,能吃掉678的三位数共有种【例 17】 如果一个四位数与一个三位数的和是,并且四位数和三位数是由个不同的数字组成的,那么,这样的四位数最多能有多少个?(8级)【解析】 四位数的千位数字是由于这个四位数与三位数的相同位数上的数字之和小于,所以这个四位数与三位数的相同位数上的数字之和均等于这两个数的其他数字均不能为四位数的百位数字可在、中选择(不能是9),有7种选择,这时三位数的百位数字是;四位数的十位数字可在剩下的个数字中选择,三位数的十位数字是四位数的个位数字可在剩下的个数字中选择,三位数的个位数字是因此,根据乘法原理,这样的四位数有个【例 18】 用19可以组成_个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成_个满足要求的三位数?(8级)【解析】 1) 9×8×7=504个2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个;(减去有2个数字差是1的情况,括号里8个数分别表示这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123、234、345、456、567、789这7种情况)【例 19】 电子表用表示点分,用表示点分,那么点到点之间电子表中出现无重复数字的时刻有_次(8级)【解析】 根据题意,在2点到10点之间,表示小时数的二位数字前一位只能为0,后一位可以为29;表示分钟数的二位数字前一位可以为05,后一位可以为09,再考虑到无重复数字,当时间为2点多、3点多、4点多或5点多时,每一种情况下,表示分钟数的两位数字中前一位有种选择,后一位数字有种选择,此时有种可能,比如时,可以为1,3,4,5,就剩下种可以选择所以这几种情况下共有种类似分析可知,当时间为6点多、7点多、8点多、9点多时,每种情况下都有种,共有种所以共种【例 20】 (2008年西城实验考题)在1,2,3,7,8的任意排列中,使得相邻两数互质的排列方式共有_ 种(8级)【解析】 这8个数之间如果有公因子,那么无非是2或38个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况奇数的排列一共有种,对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有种,所以一共有种【例 21】 在右图的每个区域内涂上、四种颜色之一,使得每个圆里面恰有四种颜色,则一共有_种不同的染色方法(8级) 【解析】 因为每个圆内个区域上染的颜色都不相同,所以一个圆内的个区域一共有种染色方法如右图所示,当一个圆内的、四个区域的颜色染定后,由于号区域的颜色不能与、三个区域的颜色相同,所以只能与号区域的颜色相同,同理号区域只能与号区域的颜色相同,号区域只能与号区域的颜色相同,所以当、四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有种不同的染法【例 22】 如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法? (6级)【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给染色,有种颜色可选第二步:给染色,由于不能与同色,所以有种颜色可选第三步:给染色,由于不能与、同色,所以有种颜色可选第四步:给染色,由于不能与、同色,但可以与同色,所以有种颜色可选根据分步计数的乘法原理,用种颜色给地图染色共有种不同的染色方法【巩固】 如图,一张地图上有五个国家,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同种颜色,那么这幅地图有多少着色方法?(6级)【解析】 第一步,给国上色,可以任选颜色,有四种选择;第二步,给国上色,国不能使用国的颜色,有三种选择;第三步,给国上色,国与,两国相邻,所以不能使用,国的颜色,只有两种选择; 第四步,给国上色,国与,两国相邻,因此也只有两种选择; 第五步,给国上色,国与,两国相邻,有两种选择 共有种着色方法【例 23】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?(6级)【解析】 对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2,所以一共有:种【巩固】 用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?(6级)【解析】 涂三块毫无疑问是分成三步第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了然后再根据乘法原理【例 24】 (难度等级 )如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同那么一共可以有多少种染色方法?【解析】 这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有种方法【讨论】如果染色步骤为,那么应该该如何解答?答案:也是种方法如果染色步骤为那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果与颜色相同,那么有2种染法,也有2种方法,如果与染不同的颜色,那么有2种染法那么只有一种染法,有2种染法,所以一共应该有种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻【巩固】 某沿海城市管辖7个县,这7个县的位置如右图现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法? (8级)【解析】 为了便于分析,把地图上的7个县分别编号为、 (如左下图)为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图那么,为了完成地图染色这件工作需要多少步呢? 由于有7个区域,我们不妨按、的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务第1步:先染区域,有5种颜色可供选择;第2步:再染区域,由于不能与同色,所以区域的染色方式有4种;第3步:染区域,由于不能与、同色,所以区域的染色方式有3种;第4步:染区域,由于不能与、同色,所以区域的染色方式有3种;第5步:染区域,由于不能与、同色,所以区域的染色方式有3种;第6步:染区域,由于不能与、同色,所以区域的染色方式有3种;第7步:染区域,由于不能与、同色,所以区域的染色方式有3种 根据分步计数的乘法原理,共有种不同的染色方法【例 25】 右图中共有16个方格,要把A,B,C,D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子问:共有多少种不同的放法?(6级) 【解析】 由于四个棋子要一个一个地放入方格内,故可看成是分四步完成这件事第一步放棋子,可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子,由于已放定,那么放的那一行和一列中的其他方格内也不能放,故还剩下9个方格可以放,有9种放法;第三步放,再去掉所在的行和列的方格,还剩下四个方格可以放,有4种放法;最后一步放,再去掉所在的行和列的方格,只剩下一个方格可以放,有1种放法由乘法原理,共有种不同的放法【巩固】 在下图的方格内放入五枚棋子,要求每行、每列都只能有一枚棋子,共有多少种放法?(6级)【解析】 要放五枚棋子,肯定需要分五步完成观察到图中的表格正好是五列的,刚好在每列放一个棋子于是,我们不妨按第列、第列、第列、第列、第列的顺序依次摆放棋子第一步:在第1列填入一个棋子因为第1列只有两个格,所以有2种放法第二步:在第2列填入一个棋子因为第2列共有三个格,可是刚刚放在第一列的那个棋子占了其中的一行,所以有3-1=2种放法第三步:在第列填入一个棋子因为第列共有四个格,可是被放在第一列、第二列的那两个棋子各占了一行,所以有4-2=2种放法第四步:在第列填入一个棋子同理推得有5-3=2种放法第五步:在第列填入一个棋子同理推得有5-4=1种放法 根据乘法原理,往方格内放入枚棋子,每行每列只有一枚棋子,共有种放法【例 26】 用3种颜色把一个的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法(6级)【解析】 根据题意可知,染完后这个的方格表每一行和每一列都恰有3个颜色用3种颜色染第一行,有种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法所以,根据乘法原理,共有种不同的染法【例 27】 下图是一个中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有多少种不同的放置方法?(6级)【解析】 第一个棋子有90种放法,第二个棋子有72种放法,根据乘法原理,共有(种)不同的放置方法 【巩固】 国际象棋棋盘是8×8的方格网,下棋的双方各有16个棋子位于16个区格中,国际象棋中的“车”同中国象棋中的“车”一样都可以将位于同一条横行或竖行的对方棋子吃掉,如果棋局进行到某一时刻,下棋的双方都只剩下一个“车”,那么这两个“车”位置有多少种情况?(8级)【解析】 对于如果只有一只“车”的情况,它可以有64种摆放位置,如果在棋盘中再加入一个“车”,那么它不能在原来那个“车”的同行或同列出现,他只能出现在其他七行七列,所以它只有7×7=49中摆放,所以这两个“车”的摆放位置有64×49=3136种方法【例 28】 奥运吉祥物中的个“福娃”取“北京欢迎您”的谐音:贝贝、晶晶、欢欢、迎迎、妮妮如果在盒子中从左向右放个不同的“福娃”,那么,有 种不同的放法【第六届小学“希望杯”全国数学邀请赛(6级)【解析】 可得(种)【例 29】 一台晚会上有6个演唱节目和4个舞蹈节目问: 如果4个舞蹈节目要排在一起,有多少种不同的安排顺序? 如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?【仁华试题】(6级)【解析】 将4个舞蹈节目视为1个节目,七个节目一起排列一共有个,但舞蹈节目还有种排列所以一共有种优先安排将6个演唱节目顺序,一共有种方法,然后将4个舞蹈节目按顺序安插到6个演唱节目前后不同位置,包括首尾一共有个位置可供4个舞蹈节目安插,共有个安插方式,所以一共有种排列方式【例 30】 四对夫妇围一圆桌吃饭,要求每对夫妇两人都要相邻,那么一共有多少安排座位的方法?(如果某种排法可以通过旋转得到另一种排法,那么这两种排法算作同一种) (6级)【解析】 方法一:事实上如果没有括号中的条件,那么所得的答案是原题答案的八分之一,因为符合原题的所有不同排法都通过旋转可以得到8种各不相同的安排方法所以可以先求出改掉括号中条件的题目答案对于改编后的题,显然所有的安排方法分为两大类,如右图所示,每个椭圆中是一对,对于其中的一类,例如右图,第一步,确定1号位的人选:8种,那么2号位只能是他(她)的妻子(丈夫);第二步确定3号位的人选:6种,那么4号位只能是坐3号位的妻子或丈夫,如此,对于右图可以有种排法,同理左图也有384种排法,一共是768种排法那么对于有括号中条件的题目一共有种排法所以用的小长方形形覆盖的方格网,共有13种不同的盖法方法二:由于括号中的条件让人很为难,对于一种新的排法,还要将它旋转,看它是否和之前的排法是否相同,当然也可以将所有排法都转到一个特殊的角度,以判断这些排法是否有相同的,所以可以定义一个特殊角度:先将四对夫妇编号,然后规定对于每一种排法1号夫妇面南坐是它的特殊角度,那么如果两种排法都转到特殊角度后,还不完全一样,那么这两种排法就无论如何也不能通过旋转得到相同的排法,所以只要求出特殊角度下的不同排法数,第一步先将4对夫妻的整体位置安排好,当然1号夫妻已经排好了,安排另3对夫妻一共有种排法,如图所示:对于以上每一种排法,夫妻之间都可以交换位置,所以一共有种排法【巩固】 (难度等级 )3个3口之家在一起举行家庭宴会,围一桌吃饭,要求一家人不可以被拆开,那么一共有多少种排法?(如果某种排法可以通过旋转得到另一种排法,那么这两种排法算作同一种)【解析】 使用原题的方法二会更方便:共种【例 31】 (2008年日本第12届小学算术奥林匹克大赛初赛)编号为1到10的十张椅子顺时针均匀地绕圆桌一圈摆放5对夫妇入座,要求男女相隔而坐,每对夫妇不能相邻或对面而坐,有 种入座的分配方式【解析】 假设有位丈夫坐在1号位,那么所有的丈夫都坐在奇数号位,妻子则坐在偶数号位由于妻子不能与丈夫相邻和相对,所以她不能坐在2,6,10号位上,只能坐在4号位或8号位上也就是说妻子只能坐在丈夫的顺时针或者逆时针方向数第3个位子上可以发现,丈夫和妻子的位子的这一关系对每一对夫妇和每一个座位都适用对于其中的某一个丈夫,他可以坐在1到10号的任意一个位子上,有10种选择不妨设他坐在1号位上,那么他的妻子只能坐在4号位或8号位上假如坐在4号位上,那么对于坐在7号位上的丈夫,他的妻子只能坐在10号位上;而对于坐在3号位上的丈夫,他的妻子只能坐在6号位上;那么对于坐在9号位上的丈夫,他的妻子只能坐在2号位;对于坐在5号位上的丈夫,他的妻子只能坐在8号位可见,只要一对夫妇的位置确定,那么其他4对夫妇的位置关系也就确定了,也就是说,只要确定了其他4位丈夫的座位,那么整个座位分配就确定了由于4位丈夫之间的位置关系是不确定的,所以有种同样地,如果坐1号位的丈夫的妻子坐在8号位上,也有24种所以这名丈夫坐在1号位上共有种那么这名丈夫坐在其它位置上也各有48种由于每个座位都是编过号的,各个座位互不相同,每一名丈夫和妻子也都不相同,所以不会出现重复的情况,所以满足题意的分配方式有种专心-专注-专业

    注意事项

    本文(乘法原理题库版.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开