欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    高数公式大全.doc

    • 资源ID:2766728       资源大小:209KB        全文页数:20页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高数公式大全.doc

    精选优质文档-倾情为你奉上高等数学公式专心-专注-专业·平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() ·积的关系: sin=tan*cos cos=cot*sin tan=sin*sec cot=cos*csc sec=tan*csc csc=sec*cot ·倒数关系: tan·cot=1 sin·csc=1 cos·sec=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(+)=cos·cos-sin·sin cos(-)=cos·cos+sin·sin sin(±)=sin·cos±cos·sin tan(+)=(tan+tan)/(1-tan·tan) tan(-)=(tan-tan)/(1+tan·tan) ·三角和的三角函数: sin(+)=sin·cos·cos+cos·sin·cos+cos·cos·sin-sin·sin·sin cos(+)=cos·cos·cos-cos·sin·sin-sin·cos·sin-sin·sin·cos tan(+)=(tan+tan+tan-tan·tan·tan)/(1-tan·tan-tan·tan-tan·tan) ·辅助角公式: Asin+Bcos=(A2+B2)(1/2)sin(+t),其中 sint=B/(A2+B2)(1/2) cost=A/(A2+B2)(1/2) tant=B/A Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B ·倍角公式: ·三倍角公式: sin(2)=2sin·cos=2/(tan+cot) sin(3)=3sin-4sin3() cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2() cos(3)=4cos3()-3cos tan(2)=2tan/1-tan2() ·半角公式: sin(/2)=±(1-cos)/2) cos(/2)=±(1+cos)/2) tan(/2)=±(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin ·降幂公式 sin2()=(1-cos(2)/2=versin(2)/2 cos2()=(1+cos(2)/2=covers(2)/2 tan2()=(1-cos(2)/(1+cos(2) ·万能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) ·积化和差公式: sin·cos=(1/2)sin(+)+sin(-) cos·sin=(1/2)sin(+)-sin(-) cos·cos=(1/2)cos(+)+cos(-) sin·sin=-(1/2)cos(+)-cos(-) ·和差化积公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 ·推导公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=(sin/2+cos/2)2 ·其他: sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算 编辑本段 公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式三: 任意角与 -的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2±及3/2±与的三角函数值之间的关系: sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan (以上kZ) 部分高等内容 编辑本段 ·高等代数中三角函数的指数表示(由泰勒级数易得): sinx=e(ix)-e(-ix)/(2i) cosx=e(ix)+e(-ix)/2 tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix) 泰勒展开有无穷级数,ez=exp(z)1z/1!z2/2!z3/3!z4/4!zn/n! 此时三角函数定义域已推广至整个复数集。 ·三角函数作为微分方程的解: 对于微分方程组 y=-y''y=y'''',有通解Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。 补充:由相应的指数表示我们可以定义一种类似的函数双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。 特殊三角函数值 a 0 30 45 60 90 sina 0 1/2 2/2 3/2 1 cosa 1 3/2 2/2 1/2 0 tana 0 3/3 1 3 None cota None 3 1 3/3 0导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:·诱导公式: 函数角Asincostancot-sincos-tan-cot90°-cossincottan90°+cos-sin-cot-tan180°-sin-cos-tan-cot180°+-sin-costancot270°-cos-sincottan270°+-cossin-cot-tan360°-sincos-tan-cot360°+sincostancot·和差角公式: ·和差化积公式:·倍角公式:·半角公式: ·正弦定理: ·余弦定理: ·反三角函数性质:高阶导数公式莱布尼兹(Leibniz)公式: 中值定理与导数应用: 曲率: 定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用: 方向导数与梯度: 多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:斯托克斯公式曲线积分与曲面积分的关系: 常数项级数: 级数审敛法: 绝对收敛与条件收敛: 幂级数: 函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数: 周期为的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程: 二阶常系数齐次线性微分方程及其解法: (*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程

    注意事项

    本文(高数公式大全.doc)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开