数学建模优秀论文停车场泊车位的优化设计与效度评价.doc
停车场泊车位的优化设计与效度评价【摘要】:随着汽车消费量剧增,“停车难”已经成为一个较为严重的社会问题。我们以某小区露天停车场为背景,用排队论对该服务系统进行了分析,并通过建立整数规划模型对其泊车位布置进行了优化设计,最后用模糊综合评价法对停车场效度进行了度量。 在对停车场泊车位优化设计的模型中,我们考虑一种把车间距空间和马路空间并入车辆所在的空间的方式,形成新的“空间单元矩形”,因其可以在空间无间隙密铺从而简化分析过程。同时设定了“最大内接矩形”作为优先标准,建立了整数规划模型,对“最大内接矩形”空间内的车位进行了优化设计,用LINGO软件编程处理,而对其余的区域采用观察法和穷举法进行设计,最终的设计方案总共能够提供102个泊车位,空间利用效率较高。在对停车场效度评价的模型中,我们选择的是模糊综合评价方法,同时采用层次分析法构建指标体系并确定指标权重,然后基于稳健性打分原则,对各指标进行打分,在形成评判集的基础上进行了综合评价。用MATLAB软件编程处理,结果显示综合评价值为4.85,停车场的效度处于较好的状态。 在对车位优劣进行评价时,我们援用了目标规划的思路,用四个依次优先级递增的指标进行评价。在筛选车位时我们又援用了决策理论中淘汰“次优方案”的思路,根据优先级逐渐把“次劣”泊车位排除,最后发现在采用我们设计的泊车方案的前提上,整个停车场右下角的车位是最劣车位,最不受欢迎。关键词:泊位设计 排队论 整数规划 多目标规划 模糊综合评价法 层次分析法 一、问题的重述随着我国的汽车消费增长并逐渐普及开来,“停车难”的问题已经越来越凸显出来,成为了困扰人们正常生活和交通秩序的重要因素。究其本质,“停车难”问题的根源在于停车位供给短缺和停车位需求旺盛之间的供需矛盾,真正意义上解决这个难题有待于车辆停放设施的增加速度跟上车辆的迅猛增加。但是在短期内难以改变车辆停放设施数目的情况下,通过优化设计提高停车场的运行效率,对于局部缓解“停车难”的现状有着重大的意义。停车场运行效率提升的关键在于停车场内部泊车位的优化设计和泊车位分配,并需要综合考虑整体的效果。对停车场整体运行效率的评价是基于停车平均等待时间、人均停车面积、停车顺畅程度等等的综合指标,需要构建一个整体评价体系。二、模型的假设1. 停车场车主到达停车场的过程是泊松流,其相继到达的间隔时间不存在记忆性,服从负指数分布(Markov)。2. 车在停车场的停留时间是完全随机的,服从一阶埃尔朗分布(Erlang)。3. 不存在预定车位或固定车位,所有的泊车位均符合先到先服务(FCFS)规则。4. 每个泊车位的平均服务率相同,且独立工作,不会相互影响。5. 车主在选择泊车位中均考虑自身效用最大化,不存在利他正义等特殊情况。6. 停车场经营业主在保证停车场基本安全的情况下,以自身利益最大化为目标进行决策,不考虑利他主义等情况。7. 进入停车场的车型只考虑小型车,小型车的详细指标参见附录二。8. 停车场进行泊车位优化设计的前提是遵守国家交通部对于停车场的相关条例(参见附录二),不考虑违规修建的情况。9. 车主不具备制定停车场车位价格的能力,但可以选择接受或者不接受特定车位的价格,因此不同车位的价格可能是有差异的。三、符号说明1.排队论部分:X/Y/Z/A/B/C:排队论模型中的指标,分别代表相继顾客到达时间的分布、服务时间的分布、服务台的个数、系统容量限制、顾客源数目和服务规则。M:负指数分布。C: 泊车位数,即服务台个数。Lq:系统中排队等待候车的车主的期望值。Wq:一个车主在系统中排队等待时间的期望值。:一个泊车位的平均服务率,1/指一个车主的平均服务时间。2.泊车规划模型部分:m:一个停车位的长度 n:一个停车位的宽度 m:空间单元矩形的长度 n:空间单元矩形的宽度 :车辆的停放角度 P:停车场内道路宽度3.模糊综合评价模型: : 第i个指标层中的第j个指标 :因素相对于的重要程度的量化值 :第k个可能的服务水平的评价结果 :W归一化处理后的结果 :模糊判断矩阵 :评判矩阵,由打分法获得。四、数学模型的分析和建立1 影响因素分析和初步判断1.1停车场业主心理分析考虑停车场业主经营停车场是处于盈利的目的,同时业主希望能够持续盈利,那么业主的利益最大化是基于尽量不发生安全事故的前提(因为出现安全事故既会损坏声誉,又需支付大笔的赔偿金)。把安全事故的发生视为一个概率问题,停车场内部的通畅程度与发生安全事故的概率直接相关,也与发生事故之后人员能够逃离的概率以及消防部门有效救援的概率相关,因此业主希望停车场内尽可能通畅以提高安全性。同时在这个基础上,业主为了自身利益最大化希望停车场地中泊车位数目尽可能多、泊车位的利用率尽可能高以提高其收益。在这两点满足的条件下,停车场业主才会追求车主的满意度,既保证安全、又保证盈利、还保证好的声誉是业主最希望达到的状态。1.2 车主心理分析每个车主都希望自己享受到最优质的停车服务,希望停车场的人均停车面积尽可能大、内部交通尽可能顺畅等等,但是车主在市场中能够观察到泊车位供不应求的情况,因此车主们对停车场的条件要求已经退化为软约束,能够获得泊车位成为首先考虑的决策标准。在获得泊车位的情况下,车主们优先考虑的是安全问题和时间效率,而这两者正好同时对停车场系统内部的通畅程度提出要求,这有利于车主提高心理满意度。(这里暂不讨论车主停车对停车收费的敏感度。)1.3 影响因素综合分析很显然,每个决策主体进行的都是具备多个目标,而且这些目标有明确的优先级。这里首先进行指标说明,如果用c1刻画停车场系统的顺畅程度,用c2刻画停车场泊车位的平均使用量(泊车位的平均使用量=泊车位平均利用率*泊车位的绝对水平),引入正负偏差变量d+和d-, 教程编写组 运筹学(第三版) 清华大学出版社 P101-P102 分别代表决策者超过目标值的部分和决策值未达到目标值的部分,简单化而言可以给出业主和车主的目标规划模型,或称满意水平模型:业主的满意水平模型是:车主的满意水平模型是P1和P2代表业主决策的优先因子,同理P1和P2代表车主决策的优先因子,并规定P1>P2,P1>P2。业主和车主约束条件是相同的,由于定性指标内部关系机理繁杂,在此不详细列出。从对双方满意水平模型中可以看出和的尽可能小对于双方都有利益改善,同时双方对和变化幅度的要求不完全统一。考虑业主和车主的总体最优化,就需具体考虑,综合协调双方的满意度指标。在双方的满意水平模型中可以得到一个结论:提高停车场顺畅程度、泊位数的绝对水平和泊位数的使用率符合双方的利益最大化,但是指标的权重双方存在分歧。2 泊车位设计模型的建立2.1国家标准的简单介绍(详细介绍见附录二) 在考虑泊车位优化设计的时候,必须首要考虑到的是泊车位的设计方案需要符合相应的国家行业标准。 根据标准号为JGJ100-98的汽车库建筑设计规范(Design Code for Garage),先简单介绍国家标准对泊车位设计的具体指标要求:1) 基于前文的假设,停车场里停放的是小型车,其外廓尺寸分别是总长为4.8米、总宽为1.8米;2) 车辆的停靠方式有五种情况,分别为平行式、30度斜列式、45度斜列式、60度斜列式和垂直式。3) 不同的车辆停靠方式对车间横向净距、车间纵向净距、车与其他建筑物间净距等的要求有很大差别,具体指标见附录二;4) 不同的车辆停靠方式对道路最小宽度的要求不同;5) 停车场内设计的小型车的最小拐弯半径为6米;泊车位的设计需要考虑到尽可能提高空间效率,但是需要在行业标准的框架下去优化,保证基本的硬性安全要求。2.2不同类型泊车方式的抽象处理方法 每个车辆都可以近似看做一个矩形,矩形的长宽均是确定的值。停车场的空间可以看做是由车辆占用空间、车间距占用空间、道路占用空间和无用空间四个方面组成,如前文所述,车间距和马路占用的空间与车辆停靠方式相关。但是由于车间距空间、马路空间这些空间的存在不利于运用规划理论对空间进行最优设计,因此考虑一种把车间距空间和马路空间并入车辆所在的空间的方式,从而形成新的空间单元矩形。这些新的矩形包含了车辆的本身空间、间隔空间和道路占用空间等,更重要的是它们能够在停车场内无间隙地密铺,能够无间隙密铺的特点使得能够采用更多的工具对其进行分析。下图是停车场车位布置的示意图,下面依据此图对形成“新的空间单元矩形”的处理方式进行详细说明。之所以在进行最大内接图形的选择时选择了最大内接矩形的原因,是由于与空间单元矩形的结构一致,这样相比其它图形而言能够更有效使得这个区域中的不可利用的边缘区域尽可能减少。同时最大内接矩形的选择的思路类似于网络规划理论中为了工期优化,优先考虑提高关键工作的工作效率和资源投入的情况,最大内接矩形的选择就是关键路径的选择,对停车场的这种抽象处理方式是有效率的。在图中所示的露天停车场中由于花坛的存在,有两个相同面积的最大内接矩形,而且可以分离为以花坛为对称轴的两个对称矩形。同时应该注意的是,之所以矩形的长没有延伸到停车场右边的弧线上,是因为考虑到有一条与花坛垂直的道路通过,需要留出最小道路宽度。那么此时就需要首先在这两个对称矩形中进行优化设计,用空间单元矩阵进行平铺,尽可能提高空间利用率。对于剩余的不规则区域,也就是图中的绿色区域为,除了按照“国家标准规定”设计的道路以外,都需要充分利用用于停车。从观察绿色区域不规则图形相应尺寸可知,此时对停车位设计限制最大的因素是“露天停车场”的剩余不规则区域的底边最小宽度。根据具体区域内底边最小宽度的情况穷举看是否能够容纳更多的泊车位,并设置最优的泊车位方式,以达到总体空间的最优利用。2.4整数规划模型建立 基于上述的分析,对泊车位进行优化设计的最关键因素在于如何在最大内接矩形中使得空间利用率最大化。在本模型设计中一方面需要考虑如何在五种车辆停靠方式中选择最优的车辆停靠方式,另一方面需要在既定的车辆停靠方式中使得最大内接矩形的空间利用率最大化。 基于线性规划理论在处理这个问题上的有效性和便捷性,可以设定如下的思路:对这五种车辆停靠方式,分别用整数规划理论求其最优泊车位设计方案,得出各自最优方案之后对各个方案进行对比,选择最优空间利用率的车辆停靠方式,同时也选择了其相应的泊车位设计方案。设最大内接矩形横向的空间单元矩形数目为X,纵向的空间单元矩形的数目是Y,最大外接矩形的长为XO,宽为Y0。设定整数规划模型如下:XO X,Y都是整数同时由于,对于五种不同的会形成五组不同的整数规划模型,五组不同的优化结论,需要对其进行对比,选择使得泊车位最多、也就是空间利用效率最高的方案。3 排队论模型的建立与最优化设计的讨论 3.1 系统描述 首先根据停车场的实际运作情况可以用下面的特征指标进行停车场进行系统性描述(部分是基于前文提及的假设): 输入过程:车主的到达是相互独立的,相继到达的时间服从Poisson分布服务时间:车主的停车时间相互独立,服从负指数分布服务窗口:等于停车场的泊车位数目系统容量:系统容量等于泊车位数目,也就是说不允许等待顾客源:假设车主来源是无限的排队规则:服从先到先服务规则 3.2 模型抽象上述的描述可以抽象为多服务台负指数分布排队论系统,这里的M/M/C/C/FCFS排队论模型 刘敬贤a,李昌伟a,刘文b “基于排队论的锚地规模论证分析” 航海工程 2009年8月的情形最适合停车场的实际情况。由于每个泊车位的平均服务率相同1=2=,于是整个服务系统的平均服务率为c。以排队系统状态间的转移作为分析起点,如图1所示,从状态1转移到状态0,就意味着系统中有一位车主服务结束的转移率为*P1,;当从状态2转移到状态1时,也就意味着两个泊车位上的车主有一个被服务完而离去,此时的转移率是2*P2。同理可以推广到状态n转移到状态n-1的情况,当nc时,状态的转移率为n*Pn;当nc时,n-c个车主在等待,那么此时的状态转移率为c*Pn。那么依次类推,由图1可得:这里,且1用递推法解上述差分方程,可得状态概率: 车辆停靠方式以图中的停放角度作为区分,按行业标准只有90度、60度、45度、30度和0度五种方式,只要设停放角度为(0/2),就可以进行一般性处理。图中一个黑色小矩形分别代表着一个停车位,需要说明的是一个停车位的长宽除了保证车辆能够容纳外,还需要考虑相邻两车之间的适度的距离,行业标准量化规定停车位的最低标准是长m为5.3米,宽n为2.4米。道路宽为P,P的最低标准由的大小决定 本文设定的空间单元矩形是用图中的红色矩形标注的,很显然新的空间单元矩形的数目与原有停车位的数目相等。如图所示,设新的空间单元矩形的长为m,宽为n,有如下关系:根据相似三角形的关系,可以得出 进一步整理加总得到: 结合具体的行业标准,分别把取0、30度、45度、60度和90度,可以得到不同停车方式下单元空间矩形的长宽的不同数值,如下表所示:停车位倾斜角度空间单元矩形的长度(符号表示为m,单位:米)空间单元矩形的宽度(符号表示为n,单位:米)平行式3.95.3斜列示(倾斜角度为30°)6.72854.8斜列示(倾斜角度为45°)7.44483.3941斜列示(倾斜角度为60°)8.03992.7713垂直式8.32.4 通过把复杂的停车位空间布置的问题,转化为空间单位矩阵的平铺问题,可以很好地从空间利用率的角度出发寻求规划理论进行优化设计,对于后期模型构建具有重要意义。2.3停车场抽象处理方法 上文已经把停车点及周边空间抽象成为无空隙的空间单元矩阵,很显然一个规则的停车场空间结构有利于更有效地设计泊车位方案。如下图中所示的露天停车场是一个不规则多边形,各条边既有线段,又有弧线,停车场设计的首要目标是空间利用效率,但是考虑到该停车场空间的不规则结构,不适宜作为矩形的空间单元结构在内部平铺以找到最佳空间利用效率。可以设想一下空间单元结构的密铺情况,由于密铺时没有空间间隔,所以密铺状态时空间利用率很高,导致空间利用率下降的因素最大可能是停车场的非边缘空间利用率低,那么停车场的非边缘空间利用效率越高,就导致停车场整体空间利用效率提高。 因此对停车场抽象处理的方法就是在停车场内部规划出最大内接矩形,首先运用整数规划的方法,用空间单元矩形在最大内接矩形中进行优化设计,使这个空间内部的空间利用率尽可能最大化;然后把最大内接矩形边缘处没有利用的区域划分到非最大内接矩形的其它区域中,对这些离散的、空间较小的区域再进行优化设计,由于此时空间容量小而且分布离散,因此可以采取穷举法或者观察法进行优化设计使得尽可能多地提高空间利用率。 那么系统的运行指标可求解如下:平均队长平均逗留时间Ws=1/ 3.3 求解最优服务率的模型 在M/M/C/C/FCFS排队论模型的框架下,最大的系统容量为C,则后来的车主会被拒绝停车,于是有: -被拒绝的概率 -被接收服务的概率 -单位时间实际进入停车场的顾客平均数,在稳定状态下,单位时间内实际完成停车服务的平均车主数目就是。 设单位时间每个车位的服务费为A元(暂不考虑不同价位的车位),于是单位时间内停车场业主的收入的期望值A元。简单而言,可设停车场的费用与其服务率成正比例关系,比例系数是S,即费用。这是可以接受的假设,因为停车场规划是依据其服务强度出发,其花费多高就对应能够达到多高的服务率水平。那么,纯利润的期望值,令,得:由于在停车场中S、G、N、都是系统确定的值,通过一段时期的观察可以得到具体数值,可以通过数值运算求解最优的服务率使得利润最大化。因此这个最优服务率可以指导停车场设计合理的服务强度,使得停车场的空间效率利用最佳。五、模型的求解如前所述,运用停车场“内接最大矩形”的规划方法、“空间单元矩形”的抽象方法,调整图形形成分析框架,然后运用整数规划的方法建模。本文使用lingo软件编写程序,求解各种“空间单元矩形”在“停车场内接最大矩形”分离的两个对称矩形上,沿长度方向和宽度方向密铺的最大数量,规划结果如下表所示,可以确定最优“停车位类型”为“垂直式”, “停车场内接最大矩形”内部最大停车位为96个,并规划好“停车场内接最大矩形”内的道路和停车位。下表所示,为各种“空间单元矩形”在两个对称“停车场内接最大矩形”上密铺的最大数量,以及长和宽方向上的最大数量停车位类型一个对称矩形在宽方向上的最大数量(用a表示)一个对称矩形在长方向上的最大数量(用b表示)停车场内接最大矩形上密铺的最大数量(max=2*a*b)平行式41188倾斜30°斜列示21248倾斜45°斜列示21768倾斜60°斜列示22184垂直式22496下图为规划示意图,蓝色区域是泊车位所在区域:另一方面,通过几何测量的方法,确定“停车场内接最大矩形”之外的四块剩余区域,在停车场长度方向的上的底边最小值,通过这个最小底边长度和各种“空间单元矩形”宽度比值关系的整数解,确定四块剩余区域的最优“停车位类型”仍然是“垂直式”,切在保证车辆正常进出的前提下,求解的最大停车位数为6个,并规划好“四块剩余区域”内的道路和停车位。因此,对于整个停车场来说,最优的“停车位类型”为“垂直式”,最大“停车位”数为102个。具体计算结果图标如下:停车位倾斜角度空间单元矩形的长度(表示符号n,单位:米)空间单元矩形的宽度(表示符号m,单位:米)平行式3.95.3斜列示(倾斜角度为30°)6.72854.8斜列示(倾斜角度为45°)7.44483.3941斜列示(倾斜角度为60°)8.03992.7713垂直式8.32.4因此,对于“停车场内接最大矩形”区域来说,最优的“停车位类型”为“垂直式”,最大“停车位”数为96个。剩余不规则区域编号剩余不规则区域的车位的数量10233142上表为:“垂直式”停车位类型在不同编号剩余区域的停车位最大数因此,对于整个停车场来说,最优的“停车位类型”为“垂直式”停车方式,最大“停车位”数木为102个,具体的规划平面图在上文已经给出。六、停车场效度的评价体系构建及结论1 方法的选择与设计模糊综合评判方法是一种常用的解决定性和定量分析的方法,在工程设计、管理和技术上已经得到广泛应用。层次分析法(AHP法)能够解决在复杂系统中,众多评判因素下权数的分配问题,能够很好的反映各因素在整体的地位。将两种方法结合,可以很方便、快捷的解决复杂系统的评判问题,因此考虑对停车场这个系统的评价采用模糊综合评判和层次分析法结合的方法。根据模糊综合评判和层次分析法结合的思路,下面拟定如下步骤构建停车场评价模型:1.1 确定影响服务水平的主要因素集(判据集)及评判集建立因素集(判据集),其中 , 这里 ,且,那么就代表第i类因素的第j个子因素。同时构建评判集为 ,代表第k个可能的服务水平的评价结果,L代表可能出现的结果数。1.2 由专家及决策者的全面分析,构造判断矩阵根据层次分析法的原理,通过评价指标两两比较,建立判断矩阵。对指标两两比较,按重要程度量化。设指标,在中任选出一对因素,进行两两比较。设表示因素相对于的重要程度的量化值。在进行比较判断时,把要素的重要程度赋予1-9这九个数值,设置由专家和决策者共同决定,形成模糊判断矩阵。标度描述如下图所示:含 义11表示两个元素相比,具有同等重要性13表示两个元素相比,前者比后者稍重要15表示两个元素相比,前者比后者明显重要17表示两个元素相比,前者比后者强烈重要19表示两个元素相比,前者比后者极端重要2,4,6,82,4,6,8表示上述判断的中间值1.3 采用层次分析法确定影响这些因素的权重对判断矩阵采用方根法计算权重矢量是一个可行的方法。先计算判断矩阵中每行元素的几何平均值 岳麓,潘郁 “动态层次分析法在客户关系管理系统中的应用” 南京工业大学学报 2004年9月:得到: 将进行归一化处理得:),得到的矩阵,对应着各个因素的权重。定义重要程度系数 ,那么可以得到因素子集的权重集为:1.4 模糊分析算子的选用及一级综合评判的计算设立评判矩阵是由小组评分法确定的,根据所得评分值将数据做归一化处理,这里设评判集为最佳,良好,一般,较差,分别对应的量化区间为1.00,0.75,0.75,0.50, 0.50,0.25,0.25,0.00,可以使处理的数据落在哪个区间内,那个区间就取1,其它的区间为0。根据评断矩阵,根据模糊评价方法可以得到综合评价指标 李志成,吴芳,李雪 “多目标多层停车场规划方案模糊综合评判” 交通科技与经济 2007年10月:这里的模糊分析算子的选择采用max-min算子,主要对关键因素进行考虑,具体选择见下表:ab=(a,b)ab=max(a,b) ab=min (a+b,1)ab=min(a,b)ab=a×bab=a×b1.5 二级的综合评判以及方案的打分评价将最初一步的综合评价作为下一层的综合评价中的变换矩阵,重复上述步骤得到最终综合评价:=(b1,b2,bl)所得到的结果作为停车场服务水平评价的结果,其结果反映的是停车场服务水平的一个分布状况. 此时设置一个量化的转置矩阵DT 金菊良,魏一鸣,丁晶.基于改进层次分析法的模糊综合评价模型J. 水利学报,2004(3):65-70.,赋予(7,5,3,1)这些数值,分别对应于判断集V=优,良,中,差,就会更容易通过评价的数值判断方案的优劣来。2 指标权重的确定2.1 指标体系的确定 指标体系的构建是利用层次分析法确定权重的基础,下面需要根据停车场的情况给出度量停车场效度的指标体系,见下图:基于停车场的安全性主要是指:车辆在停车场行驶过程中,由停车场的特征赋予车辆的避险性能;以及车辆在停放过程中,避免被其他车辆挂擦以及避免被盗的性能。安全性是驾驶人员对停车场服务水平的基本要求,也是停车场营运者得基本要求,他们都希望停放车辆的安全性高和出现紧急情况时有良好的出入停车场的环境,还希望停车行为对正在行使车辆的安全性的影响最小,不会形成恶性的循环,以致严重影响动态的停车取车,等等。因此,安全性是对停车场的效度进行评价的重要指标之一。基于停车场的方便性主要是指:车辆进入和驶出停车场所需的时间和行驶的路程最小,乘车的人员和停车场管理人员到达停车场相应位置最快,等等。方便性是对于人和车两者的流动而言的,停车者都希望从停车场到目的地的步行状况良好,步行的距离越短越好,都希望停车场内部通畅性良好,驾驶员出入停车场都比较容易,则该停车场被使用的可能性就越大。另外,基于停车场的特殊性,追求最高的方便性,很多驾驶员都喜欢在安全性能高的前提下,选则距离停车场出口最近的停车位。停车场营运者,也希望,停车场的方便性尽可能高,提高停车场的效度。因此,方便性也是对停车场的效度进行评价的重要指标之一。 基于停车场的效率性主要是指:有效的利用能源、时间和空间资源的能力,在停车场中,停车集中指数的增加,均衡的泊位利用,停车时间的减少,停车时间的合理这些因素直接影响停车场服务水平的好坏。并且合理的收费-停车时间的利用可以使短时的停车和长时间的停车自动地分离开来,对改善停车场的服务水平大有帮助。驾驶人员希望停车场具有尽可能高的效率性,追求效率最大化,尽可能多的节省时间,等等;停车场营运者也希望停车场具有最大的效率,来达到停车场的最佳运作状态,提高停车场的稳定性和适用性,等等。因此,效率性也是对停车场的效度进行评价的重要指标之一。那么U=安全性U1,方便性U2,效率性U3。其中, 停车行为对其他车辆的行驶的影响降低指u11, 车辆拐弯的难度降低指u12, 对紧急情况处理的灵活性增强指u13, 进出停车场的顺畅程度升高指u14;停车场中车主的平均步行距离减少指u21, 人车分离程度提高指u22, 停车场内道路通畅程度上升指u23;泊车位的使用率提升指u31, 停车场内空间利用率提高指u32, 平均每个空车位被补缺所需时间减少指u33, 泊车位的使用强烈波动的情况减少指u34。2.2 判断矩阵和指标权重确定 通过同一指标层内各个指标之间的两两比较,形成如下的模糊判断矩阵:U11U12U13U14U111373U121/2151U131/71/511/5141/3151U21U22U23U2111/33U22315U231/31/51U31U32U33U34U3111/31/51/3U32311/31U335313U34311/31根据上文的思路,通过MATLAB编程(算法见附录),算出安全性、便捷性和效率性三个层次各自内部的权重为W1 =W2=0.2583 0.6370 0.1047 , W3=0.0776 0.2010 0.5205 0.2010三个层次在目标层的权重W=0.3854 0.1850 0.42962.3 对停车场系统的综合评价设评判集为最佳,良好,一般,较差,分别对应的量化区间为1.00,0.75,0.75,0.50, 0.50,0.25,0.25,0.00,可以使处理的数据落在哪个区间内,那个区间就取1,其它的区间为0。那么可以用专家打分法对停车场进行评价,但是需要说明的是由于自身专业在这个领域的专业知识有限,防止出现大的偏差,为了结果的可靠性,采用稳健性打分原则:对于有把握的指标进行主观的评价,对于模棱两可的指标评价为“一般”,对不确定的尽可能把分数打低,这样就大大提高了可靠性。三个指标层次的评级集Ci如下:最佳良好一般较差U110100U121000U130100U140100最佳良好一般较差U210010U220100U230100最佳良好一般较差U310010U321000U330100U340010 运用上述的综合评价算法,使用MATLAB编程,计算得到:一级综合评价指标为B11= 0.2292 0.7708 0 0 B12= 0 0.7417 0.258 0 B13= 0 0.7215 0.2785 0 二级综合评价指标=0.0883 0.7442 0.1674 0 计算得到综合评价值= 4.8418 当指标评价全是最佳时B1=7,全是良好时B1=5,全是一般时B1=3,全是较差是B1=1。据此我们将综合评价值分为三个区间:B1值区间(1,3)(3,5)(5,7)评价度较差一般较好从数值上看停车场的评价度是属于一般的区间,但由于对该停车场的评价集建立时采用的是稳健性原则,把不完全确定的因素归为较差的类别,那么最终评价时可以考虑把综合评价值适度增大性调整,所以对该停车场效度的评价度可以认为停车场处于较好的状态。七、车位的分类与评价车主对泊车位的评价与上述停车场的效度评价不一样,很显然车主的出发点是通过选择车位使得自身效用的最大化,而不是整个停车场系统运作效果的最大化。车主对车位的评价好坏与他自身的需求有直接关系,比如某车主平时赶时间,他就会特别重视车位的便捷程度,而每个车主的需求不同,因此对于车位的评价也是多个维度的。部分借鉴对停车场的整体评价指标,可以认为车主对于车位好坏的评价是基于安全性和便捷性两个维度出发(不考虑不同车位的价格差异)。援用选取重要性指标的原则,考虑安全性指标中被盗窃比率和被擦挂比率是最关键因素,考虑便捷性指标中靠近出口的距离和步行的距离为最重要指标。类似于目标规划的解题思路,影响对车位评价的这四个关键因素是存在优先次序的,那么在评价决策中的处理就存在优先级别的差异。就一般的车主而言而言,车辆的安全是最为关键的,而越远离进出口的越偏僻的车位发生偷盗损坏事件的概率就越高;车辆不被擦挂应该是其次考虑的,当然不在拐角处的停车位要比在拐角处的停车位被擦挂的概率小得多;接着需要考虑步行出停车场的时间,离门越近当然所花时间越少;其次是车辆离出口的距离,这是因为很多车主来取车往往是有事情急着处理,不能耽误时间,那么这四者的优先秩序就是:被盗窃率>被擦挂率>步行距离>离出口的距离。根据目标规划的理论,越高优先等级的指标的逆向偏差变量(与其负向偏差变量相区别)越大,对于整体优化越不利。这里同理,如果对越高优先级别指标的损坏越严重的车位,它的评价肯定越差。在规划理论中确定最优可以通过排除“次优”来实现,那么这里为了确定“最差”的车位,也可以通过排除“次差”的车位来实现。下面具体说明排除“次差”车位的过程: 首先考察第一优先级的盗窃率,车位越远离门口越偏僻,越容易招致偷盗损坏,那么根据排除“次差”车位原则,首先排除1、2区域和中间矩形左边大部分的区域;接着考察第二优先级指标的被擦挂率,在拐角处最容易被擦挂,所以中间矩形中只有靠近右边道路的一列车位保留,其余中间车位作为“次差”车位排除掉,3、4区域得到保留;然后考虑第三优先级的步行距离,与3、4区域相比,中间矩形区域车位的步行距离要少,因此予以排除,剩下3、4两块区域备选;最后考虑离出口的距离,由于车是单行道,那么显然4区域的车位比3区域的车位更容易出停车场,将其予以排除,所以通过依次根据优先级别排除“次差”车位的方法确定区域3的车位是最不受车主欢迎的车位。八、模型的评价1、优点 1)运用了目标规划对停车场系统中车主和业主双方自身利益最大化行为进行了分析,较客观地分析得出了双方的目标一致性的结论。 2)运用了M/M/C/C/FCFS排队论模型对停车场这个服务系统进行了分析,并提出了最优服务率的概念,对停车场规划提出了指导。 3)巧妙地对泊车位进行了抽象处理,提出了空间单元矩形的概念,为构建模型提供了极大的便捷。 4)提出了最大内接矩形的概念,通过优先提高最大内接矩形的空间利用率,进而提高整体空间利用率的目的。 5)在对停车场进行效度评价时把模糊综合评价法与层次分析法结合在一起,很巧妙地处理了复杂系统的评价,而且提高了评价的可靠性。 6)在度量不确定指标时采用了稳健性原则,对于不确定的指标给予较低的评价,以最大程度保证稳定性。 7)在对车位优劣进行评价的时候采取了逐步排除“次劣”车位的方式,是一种方法上的创新,而且评价效果比较准确。2、缺点1)现实生活中小区的车主停车的间隔时间和持续时间不完全是负指数分布,假设分布函数是负指数分布过于理性化;2)在评价停车场效度时用的主要是主观评价法,难免可能产生误差,有失客观性。 3)在分析车位优劣和整体评价时没有考虑不同车位不同价格的情形,实际上价格作为调节资源配置效率最有效的杠杆,对于评价结论影响很大,不能够简单忽略。九、模型的改进与推广1. 模型的改进1)把价格因素引入整个模型的评价体系和车位选择系统中,使其发挥调节系统效率的作用,可以用博弈论的方法求解车主围绕不同定价的不同车位而最厚产生的最优均衡状态。由于整个博弈过程是动态的,是一个自适应的学习过程,可以采用演进博弈的思想,通过系统的快速学习和适应,逐渐调整各自的策略,最后形成的最优均衡状态。2)在形成评价指标的评价集时多用客观性度量标准,主观评价与客观评价相结合,避免纯粹的主观评价,提高整体评价的可靠性。3)本模型在设计泊车位时只考虑了一种车型,而实际上一个停车场一定是可以容纳多种车型的,因此在模型中引入多种车型的泊车位设计就显得非常必要,小型车车位的设计只是多种车型的泊车位设计的一种特殊情况,向这个方向的模型构建更有意义。2. 模型的推广 1)停车场模型是服务机构模型的一种,如何优化设计车位使其空间效率和时间效率最高也就是服务机构资源利用效率最大化的模型,在诸如医院采用多少就诊窗口、码头修建多少个卸货口、理发店请多少个理发师等等生活多种服务类机构中都可以广泛运用,能够帮助有效提高服务类机构的效率。2)对服务机构的评价模型体系是层次分析法和模糊综合评价法结合形成的,具有较好的实用性,可以在服务机构评价中得到广泛应用,以便准确了解其运行效果和运行效率,进而进一步改善。十、附录附录一:泊车位图形附录二:行业标准中华人民共和国行业标准汽车库建筑设计规范 Design Code for Garage JGJ100-98主编单位:北京建筑工程学院批准部门:中华人民共和国建设部施行日期:1998年9月1日1、 汽车库建筑分类表 规模特大型大型中型小型停车数(辆)5003015005130050注:此分类适用于中、小型车辆的坡道式汽车库及升降机式汽车库,并不适用其他机械式汽车库。2 车辆类型及其外廓尺寸(基本依据)3、停放车辆与通道呈一定角度,停车带宽度可变,适宜性强,停放较方便,单位停车面积停车量少于垂直式停车。主要有30度、45度、60度三种。4、汽车库内汽车与汽