6层框架住宅毕业设计建筑类毕业论文.doc
1.工程概况黑龙江省某市兴建六层商店住宅,建筑面积4770平方米左右,拟建房屋所在地震动参数,基本雪压,基本风压,地面粗糙度为B类。地质资料见表1。表1 地质资料编号土 质土层深度(m)e1人工填土1152粉质粘土518.8530.930.35101903粘 土1018.524.20.820.40122102.结构布置及计算简图根据该房屋的使用功能及建筑设计的要求,进行了建筑平面、立面及剖面设计,其标准层建筑平面、结构平面和剖面示意图分别见图纸。主体结构共6层,层高1层为3.6m,26层为2.8m。填充墙采用陶粒空心砌块砌筑:外墙400mm;内墙200mm。窗户均采用铝合金窗,门采用钢门和木门。楼盖及屋面均采用现浇钢筋砼结构,楼板厚度取120mm,梁截面高度按跨度的估算,尺寸见表2,砼强度采用。屋面采用彩钢板屋面。表2 梁截面尺寸(mm)层次混凝土强度等级横梁纵梁次梁柱截面尺寸可根据式估算。因为抗震烈度为7度,总高度,查表可知该框架结构的抗震等级为二级,其轴压比限值;各层的重力荷载代表值近似取12,由图2.2可知边柱及中柱的负载面积分别为和。由公式可得第一层柱截面面积为边柱 中柱 如取柱截面为正方形,则边柱和中柱截面高度分别为和。根据上述计算结果并综合考虑其它因素,本设计框架柱截面尺寸取值均为,构造柱取。基础采用柱下独立基础,基础埋深标高-2.40m,承台高度取1100mm。框架结构计算简图如图1所示。取顶层柱的形心线作为框架柱的轴线;梁轴线取至板底,层柱高度即为层高,取2.8m;底层柱高度从基础顶面取至一层板底,取4.9m。 图1.框架结构计算简图3.重力荷载计算3.1屋面及楼面的永久荷载标准值屋面(上人): 20厚水泥砂浆找平层 150厚水泥蛭石保温层 100厚钢筋混凝土板 20厚石灰砂浆 合计 4.1115层楼面: 瓷砖地面(包括水泥粗砂打底) 0.55 120厚钢筋混凝土板 V型轻钢龙骨吊顶或20厚水泥砂浆 0.34 合计 3.393.2屋面及楼面可变荷载标准值 上人屋面均布荷载标准值 2.0 楼面活荷载标准值 2.0 屋面雪荷载标准值 3.3梁、柱、墙、窗、门重力荷载计算 梁、柱可根据截面尺寸、材料容重及粉刷等计算出单位长度上的重力荷载;对墙、门、窗等可计算出单位面积上的重力荷载了。具体计算过程从略,计算结果见表3。 表3 梁、柱重力荷载标准值层次构件n1横梁0.30.5251.053.9385.414397.714288.76纵梁0.30.6251.054.7253.012170.10纵梁0.30.6251.054.7252.8452.92柱0.60.6251.059.4504.9663056.13横梁0.30.5251.053.9383.011129.95纵梁0.30.6251.054.7254.816362.88纵梁0.30.6251.054.7252.112119.07续表3纵梁0.30.6251.054.7253.018255.153588.57纵梁0.30.6251.054.7254.816362.88纵梁0.30.6251.054.7252.112119.07纵梁0.30.6251.054.7252.8679.38柱0.60.6251.059.452.8661746.36横梁0.30.5251.053.9385.422467.83横梁0.30.5251.053.9383.022259.91次梁0.30.4251.053.153.2880.64次梁0.30.4251.053.153.5222.05次梁0.30.4251.05 3.155.28131.04次梁0.30.4251.053.153.4664.26 注:1)表中为考虑梁、柱的粉刷层重力荷载而对其重力荷载的增大系数;表示单位长度构件重力荷载;n为构件数量 2)梁长度取净长;柱高取层高。外墙为400厚陶粒空心砌块(5),外墙面贴瓷砖(0.5),内墙面为20mm厚抹灰,则外墙单位墙面重力荷载为:;内墙为200厚陶粒空心砌块,两侧均为20mm厚抹灰,则内墙单位面积重力荷载为:1。木门单位面积重力荷载为; 铝合金窗单位面积重力荷载取;钢铁门单位面积重力荷载为。3.4重力荷载代表值(见图4) 集中于各楼层标高处的重力荷载代表值,为计算单元范围内的各楼层楼面上的重力荷载代表值及上下各半层的墙柱等重量。计算时,各可变荷载的组合按规定采用,屋面上的可变荷载均取雪荷载,具体过程略,计算简图见图2。 4.横向框架侧移刚度计算横梁线刚度计算过程见表4;柱线刚度计算见表5。表4 横梁线刚度计算表类别层次AB3600BC6000表5 柱线刚度计算表层次149002800柱的侧移刚度D值按下式计算:。根据梁柱线刚度比的不同,柱可分为中框架中柱和边柱、边框架中柱和边柱以及楼、电梯间柱等,计算结果分别见表6、 表7、表8。表6 中框架柱侧移刚度D值层 次左边柱(18根)右中柱(18根)中柱(18根)10.3540.363119960.5190.421139101.260.5417845787518260.2030.092162920.3380.145256780.720.265469291366066 表7 边框架柱侧移刚度D值层 次A-1,A-15,A-16,A-30D-1,D-15,D-16,D-30B-1,B-15,B-16,B-3010.5910.421139100.3540.363119960.9450.4916193168396260.3380.145256780.2030.092162920.540.21337721318764将上述不同情况下同层框架侧移刚度相加,即得框架各层层间侧移刚度,见表8。由表8可见,故该框架为横向规则框架。表8 横向框架层间侧移刚度D值层 次1234561194642168483016848301684830168483016848305.横向水平荷载作用下框架结构的内力和侧移计算5.1横向水平地震作用下框架结构的内力和侧移计算5.1.1横向自振周期计算结构顶点的假想位移计算见表9。表9 结构顶点的假想位移计算层 次64940.394940.39 1684830 2.930 88.5856880.2811820.6716848307.02085.6546880.2818700.95 168483011.1078.6336880.2825581.23 168483015.18067.5326880.2832461.51168483019.27052.3517058.8839520.39119464233.08033.08结构基本自震周期,其中T的量纲为m,取,则 5.1.2 水平地震作用及楼层地震剪力计算 本方案结构高度小于40m,质量和刚度沿高度分布较均匀,变形以剪切型为主,故可用底部剪力法计算水平地震作用。因为是多质点结构,所以 设防烈度按7度考虑,场地特征周期分区为二区,场地土为类,查表得:特征周期Tg=0.40s 水平地震影响系数最大值 因为,所以不应考虑顶部附加水平地震作用。各质点的水平地震作用: 表10各质点横向水平地震作用及楼层地震剪力计算表层次Hi(m)Gi(KN)GiHi(KN)Fi(KN)Vi (KN)618.94940.3993373.370.271116.791116.79516.16880.28110772.510.223922.3862039.176413.36880.2891507.720.185765.2082804.384310.56880.2872242.940.146603.9843408.27827.76880.2852978.160.107442.583850.85814.97058.8834588.510.07289.544140.398各质点水平地震作用及楼层地震剪力沿房屋高度的分布如下图3。(a)纵向水平地震作用分布 (b)层间剪力分布 图3 纵向水平地震作用及层间剪力分布图5.1.3水平地震作用下的位移验算 水平地震作用下框架结构的层间位移和顶点位移按下式计算 和 ,各层的层间弹性位移角,计算结果如表11。表11 横向水平地震作用下的位移验算层 次61116.7916848300.6611.3128000.23652039.17616848301.2110.6528000.43242804.38416848301.669.4428000.59333408.27816848302.027.7828000.72123850.85816848302.295.7628000.81814140.39811946423.473.4749000.708由表可见,最大层间弹性位移角发生在第2层,其值0.8181/550,满足要求,其中是由弹性层间位移角限值查得。5.1.4 水平地震作用下框架内力计算 以4轴线框架内力计算,其余框架计算从略。 框架柱端剪力及弯矩按式 ; ; 各柱反弯点高度比 本例中底层柱需考虑修正值y2,第二层柱需考虑修正值y1和y3,其余柱均无修正。计算结果见表12。 梁端弯矩、剪力及柱轴力分别按式 ; ; ;计算结果见表12。表12 各层柱端弯矩及剪力计算层次hi/mVi/kNDijN·m右 边 柱中 柱Di1Vi1yDi2Vi2y62.81116.7916848303567817.020.1300.13.16228.463975325.320.1490.0503.872.1652.82039.17616848302567831.080.1310.1510.1957.763975354.440.1490.116.33146.9942.82804.38416848302567842.740.1310.219.6578.63975378.70.1490.2559.03177.0832.83408.27816848302567851.940.1310.3514.2779.53975397.990.1490.35102.89191.0822.83850.85816848302567858.690.1570.698.854.8926711108.390.1730.53206.81183.414.94140.39811946421391048.210.230.95305.8316.12547183.580.4160.9368.5940.59注:表中M的量纲为kN·m,V量纲为kN 续表12 层次hi/mVi/kNDijN·m边 柱Di1Vi1y63.076111946031654110.540.1300.13.16228.4653.01635.8711946031654122.650.1310.1510.1957.7643.02364.9311946031654132.750.1310.219.6578.633.02944.5311946031654140.770.1310.3514.2779.523.63363.748289631127145.740.1570.698.854.8914.93640.7911095932002265.70.230.95305.8316.1表13梁端弯矩、剪力及柱轴力计算层次边梁边梁柱轴力 LVbLVb右边柱中柱N1左边柱639.60224.7543.617.8828.57710.7166.06.5517.88-11.33-6.55567.31742.0733.630.3942.90916.096.09.8348.27-31.89-16.38499.56462.2283.644.9452.17219.5656.011.9693.21-64.87-28.343127.85779.9113.657.7171.69226.8856.016.43150.92-106.15-44.77231.75619.8483.614.3378.33829.3776.017.95165.25-102.53-62.721278.574174.113.6125.75101.9038.2116.023.35291-204.93-86.07注:1)柱轴力中的负号表示拉力。当为左地震时,左侧两根柱为拉力,对应的右侧两根柱为压力。2)表中单位为kN·m,V单位N,l的单位为m。.(a)框架弯矩图 (b)梁端剪力及柱轴力图图4 左地震作用下框架弯矩图、梁端剪力及柱轴力图5.2横向风荷载作用下框架结构内力和侧移计算5.2.1风荷载标准值风荷载标准值按式,基本风压w0=0.40KN/m2。由荷载规范查得(迎风面)和(背风面),B类地区,H/B=18.9/82.9=0.23,查表得: 脉动影响系数=0.42. T1=0.492S ,W0T12=0.097KNS2/m2. 查表得脉动增大系数=1.23。 仍取图4轴线横向框架,其负载宽度4.05m,沿房屋高度分布风荷载标准值 根据各楼层标高处高度Hi查取,沿房屋高度的分布见表14。 沿房屋高度的分布见图5(a)。 表14 沿房屋高度分布风荷载标准值层次Hi(m)Hi(m)618.91.001.2261.4212.261.41 516.10.8521.1641.3782.081.30413.30.7031.0921.3331.891.18310.50.5561.0141.2831.691.0527.70.4071.01.2101.570.9814.90.2591.01.1341.470.92荷载规范规定,对于高度大于30m且高宽比大于1.5的房屋结构,应采用风振系数来考虑风压脉动的影响,本例房屋高度H=18.9m<30m,H/B<0.23,因此,该房屋应不考虑风压脉动的影响。 框架结构分析时,应按静力等效原理将分布风荷载转化为节点集中荷载,节点集中荷载见图5(b),例第5层集中荷载F5的计算如下:F5=(2.08+1.3+1.89+1.18)×2.8×1/2 +(2.26-2.08)+(1.41-1.3)×2.8×1/2×1/3 +(2.08-1.89)+(1.3-1.18)×2.8×1/2×2/3 =9.45KN (a)风荷载沿房屋高度的分布 (b)等效节点集中风荷载 图5 框架上的风荷载5.2.2风荷载作用下的水平位移验算 根据图5(b)所示水平荷载,由式计算层间剪力Vi,然后依据表6求出轴-4线框架的层间侧移刚度,再按式;计算各层的相对侧移和绝对侧移,计算结果见表15。表15风荷载作用下框架层间剪力及侧移计算层次123456Fi(KN)10.977.157.748.599.458.43Vi(KN)52.3341.3634.2126.4717.888.434375188899888998889988899888991.1960.4650.3850.2980.2010.0941.1961.6612.0462.3442.5452.6390.2440.1660.1380.1060.0720.034 由表15可见,风荷载作用下框架最大层间位移角为0.244,远小于1/550,满足规范要求。5.2.3风荷载作用下框架结构内力计算风荷载作用下框架结构内力计算过程与水平地震作用下的相同。4轴线横向框架在风荷作用下的弯矩,梁端剪力及柱轴力见图6。计算结果见表16表17;表17 风荷作用梁端弯矩剪力及柱轴力计算层次左边梁右边梁柱轴力LVbLVb右边柱中柱N1左边柱64.0750.4896.00.765.6543.5343.62.552-0.76-1.7922.55257.0970.8526.01.32510.9896.8683.64.96-2.085-2.0857.512411.0971.3326.02.07217.46110.9133.67.882-4.157-4.15715.394314.4631.7366.02.7023.78314.8643.610.735-6.857-6.85726.129215.3921.8476.02.8735.593.4943.62.523-9.73-9.7328.652125.6153.0746.04.78268.12342.5773.630.75-14.512-14.5159.4024轴线横向框架在风荷载作用下的弯矩、梁端剪力及柱轴力见图6。表16 风荷作用各层柱端弯矩及剪力计算层次hi/mVi/kNDijN·m左 边 柱中 柱Di1Vi1yDi2Vi2y62.88.4388899162921.540.2030.0550.2374.075469294.450.720.718.8473.61352.817.8843751162923.280.2030.2532.3246.86469299.4390.720.410.57215.85742.826.4743751162924.850.2030.3544.8078.7734692913.9730.720.4517.60621.51832.834.2143751162926.270.2030.457.99.6564692918.0590.720.4522.75427.81122.841.3643751162927.580.2030.64713.7327.4924692921.8340.721.1670.917-9.78114.952.33437511199614.350.3540.83158.43211.8831784521.3441.260.5961.70642.88层次hi/mVi/kNDijN·m右 边 柱Di1Vi1y62.88.4388899256782.430.3380.1691.155.65452.817.8843751256785.160.3380.3194.6099.83942.826.4743751256787.650.3380.48.56812.85232.834.2143751256789.880.3380.4512.44915.21522.841.36437512567811.950.3381.20540.319-6.85914.952.33437511391016.640.5910.65953.73227.804续表16(a)框架弯矩图 (b)梁端剪力及柱轴力图图6横向框架在水平风荷载作用下框架弯矩图、梁端剪力及柱轴力图6.竖向荷载作用下框架结构的内力计算6.1横向框架内力计算6.1.1计算单元取8轴线横向框架进行计算,计算单元宽度为3.6m,如图9所示。由于房间内布置有次梁,故直接传给该框架的楼面荷载如图中的水平阴影线所示,计算单元范围内的其余楼面荷载则通过次梁和纵向框架梁以集中力的形式传给横向框架,作用于各节点上。由于纵向框架的中心线与柱的中心线不重合,因此在框架节点上还作用有集中力矩。6.1.2荷载计算6.1.2.1恒荷计算在图7中,代表横梁自重,为均布荷载。对于第6层:=,为房间板传给横梁的梯形荷载,由图7所示,几何关系得图7 横向框架计算单元图8各层梁上作用的恒荷载 = 、分别为由边纵梁、中纵梁直接传给柱的恒载,它包括梁自重、楼板重和女儿墙等的重力荷载,计算如下:集中力矩 对25层,包括梁自重和其上横墙自重,为均布荷载。其它荷载计算方法同第6层: 对1层: 6.1.2.2活荷载计算 活荷载作用下各层框架梁上的荷载分布如图9所示。 图9 各层梁上作用的活荷载 在雪荷载作用下: 对于15层: 将以上计算结果汇总,见表18,表19。表18 横向框架恒荷汇总表层 次63.93814.79614.796045.143.64045.16.77006.7652512.40212.2049.15311.1932.5762.5863.3432.494.89004.87117.5512.2049.15311.1932.5762.5863.3432.494.89004.87表19 横向框架活荷汇总表层 次67.21206.4812.9625.9200.972000.972157.25.46.66.4812.5625.9212.510.972000.9656.1.3内力计算梁端、柱端弯矩采用弯矩二次分配法计算。弯矩计算过程如图10所示,所得弯矩图如图11所示。梁端剪力可根据梁上竖向荷载引起的剪力与梁端弯矩引起的剪力相叠加而得;柱轴力可由梁端剪力和节点集中力叠加得到,计算柱底轴力还需要考虑柱的自重,如表20和表21所列。(a) 恒荷作用下 图10 横向框架弯矩的二次分配法(b)活荷作用下图10 横向框架弯矩的二次分配法(a)恒荷作用下图11竖向荷载作用下框架弯矩图(b)活荷作用下图11 竖向荷载作用下框架弯矩图表20 恒荷作用下梁端剪力及柱轴力层次荷载引起的剪力弯矩引起的剪力 总 剪 力 柱 轴 力AB 跨BC 跨AB 跨BC 跨AB跨BC跨 A 柱 B 柱C 柱VA=VBVBVCVA=-VBVB=VCVAVBVBVCN顶N底N顶N底N顶N底623.3151.0751.07-3.9771.35919.33327.28749.71149.71164.433110.738120.638166.94394.811141.116553.98100.7393.43-6.4642.17847.51660.44491.25298.552203.354229.814369.579396.039277.468303.928453.98100.7393.43-6.272.27947.7160.2591.15198.451322.624349.084598.38624.84440.179466.639353.98100.7393.43-6.272.27947.7160.2591.15198.451441.894468.354827.181853.641602.89629.35253.98100.7393.43-6.292.1447.6960.2791.2998.59561.144587.6041056.1411082.601765.74792.2153.98100.7393.43-6.4041.9947.57660.38491.4498.74680.28706.741285.3651311.825928.74955.2表21 活荷作用下梁端剪力及柱轴力层次荷载引起的剪力弯矩引起的剪力 总 剪 力 柱 轴 力AB 跨BC 跨AB 跨BC 跨AB跨BC 跨 A 柱 B 柱C 柱VA=VBVBVCVA=-VBVB=VCVAVBVBVCN顶=N底N顶=N底N顶=N底66.4825.2025.20-1.9310.1214.5498.41125.32125.07911.02946.69231.55956.4815.6415.05-0.5630.0225.9177.04315.66215.02812.39735.26521.46346.4815.6415.05-0.7230.0445.7577.21215.68415.00612.23735.45621.44136.4815.6415.05-0.7230.0445.7577.21215.68415.00612.23735.45621.44126.4815.6415.05-0.740.0385.747.2215.67815.01212.2235.45821.44716.4815.6415.05-1.1250.085.3557.60515.7214.9711.83535.88521.4056.2横向框架内力组合6.2.1结构抗震等级 结构的抗震等级根据结构类型、地震烈度、房屋高度等因素查表得,本商场框架结构为二级抗震等级。6.2.2框架梁内力组合 本方案考虑了四种内力组合,即,及。此外,对于本方案,这种内力组合与考虑地震作用的组合相比一般较小,对结构设计不起控制作用,故不予考虑。各层梁的内力组合结果见表22,表中,两列中的梁端弯矩为经过调幅后的弯矩(调幅系数取0.8)。6.2.3框架柱内力组合取每层柱顶和柱底两个控制截面进行组合,组合结果以及柱端弯矩设计值的调整见表6.6表6.9。在考虑地震作用效应的组合中,取屋面为雪荷载时的内力进行组合。层次截面内力SGKSQKSWKSEK1.2SGK+1.4(SQK+SWK)SQKSQK一AM-30.461-2.58668.123278.57453.999135.546243.031-