欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    第8章 时间序列分析(1).ppt

    • 资源ID:2666530       资源大小:1.82MB        全文页数:116页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第8章 时间序列分析(1).ppt

    中央财经大学统计学院,第8章 时间序列分析 Time Series Analysis,8.1 时间序列的分解 8.2 指数平滑 8.3 ARIMA模型,中央财经大学统计学院 2,学习目标,理解时间序列分析中的基本概念;掌握时间序列成分的分解方法;掌握根据时间序列的组成成分进行预测的方法;掌握时间序列的指数平滑预测方法熟悉ARIMA模型特性,了解建模方法,中央财经大学统计学院 3,为什么要进行时间序列分析?,个人、企业和政府都需要根据历史数据(时间序列)对现象的未来发展作出预测并采取相应的决策,时间序列分析为我们提供了相应的分析工具。我国每年年初都要对当年的主要经济指标作出预测,每个五年计划中要对未来五年的经济和社会发展进行预测。股票经纪人要对股票市场的未来走势作出及时的预测并相应作出买入或卖出的决策。企业经理人员的决策中经常需要对未来的市场供求进行预测。,中央财经大学统计学院 4,8.1 时间序列的分解,8.1.1 时间序列的构成成分 8.1.2 时间序列分解模型8.1.3 时间序列长期趋势分析 8.1.4 时间序列季节变动分析 8.1.5 时间序列循环变动分析 8.1.6 时间序列分解预测法,中央财经大学统计学院 5,8.1.1 时间序列的构成成分,一个时间序列中可能包含以下四个(或者几个)组成成分:长期趋势(Secular trend,T)季节变动(Seasonal Variation,S)循环波动(Cyclical Variation,C)不规则波动(Irregular Variation,I),中央财经大学统计学院 6,长期趋势,现象在较长时期内持续发展变化的一种趋向或状态可以分为线性趋势和非线性趋势,中央财经大学统计学院 7,季节变动(S),由于季节的变化引起的现象发展水平的规则变动。季节变动产生的原因主要有两个:自然因素;人为因素:法律、习俗、制度等“季节变动”也用来指周期小于一年的规则变动,例如24小时内的交通流量。,中央财经大学统计学院 8,循环变动(C),以若干年为周期、不具严格规则的周期性连续变动。与长期趋势不同,它不是朝着单一方向的持续运动,而是涨落相间的波浪式起伏变化;与季节变动也不同,它的波动时间较长,变动的周期长短不一,变动的规则性和稳定性较差。,中央财经大学统计学院 9,不规则变动(I),由于众多偶然因素对时间序列造成的影响。不规则变动是不可预测的。,中央财经大学统计学院 10,8.1.2 时间序列分解模型,时间序列的组成成分之间可能是乘法或加法的关系,因此,时间序列可用多种模型进行分解,常见的有加法模型、乘法模型和加乘混合模型。加法模型假设时间序列中每一个指标数值都是长期趋势、季节变动、循环变动和不规则变动四种成分的总和,在加法模型中,四种成分之间是相互独立的。某种成分的变动并不影响其他成分的变动。各个成分都用绝对量表示,并且具有相同的量纲。,中央财经大学统计学院 11,乘法模型,乘法模型是假设时间序列中每一个指标数值都是长期趋势、季节变动、循环变动和不规则变动四种成分的乘积。在乘法模型中,四种成分之间保持着相互依存的关系。一般而言,长期趋势成分用绝对量表示,具有和时间序列本身相同的量纲,其它成分则用相对量表示。,中央财经大学统计学院 12,加乘混合模型,比如 时间序列分解模型的选取需要考虑到现象变化的规律和数据本身的特征,如果季节变动(循环变动、不规则变动)依赖于长期趋势的变化,则宜选用乘法模型或加乘混合模型,否则可以考虑加法模型。,加乘混合模型,中央财经大学统计学院 13,8.1.3 时间序列长期趋势分析,研究目的:通过测定和分析过去一段时间之内现象的发展趋势,来认识和掌握现象发展变化的规律性;通过分析现象的长期趋势,为统计预测提供必要的条件;消除原有时间序列中长期趋势的影响,更好地研究季节变动和循环变动等问题。,中央财经大学统计学院 14,1 移动平均法,移动平均法:在原时间序列内依次求连续若干期的平均数作为其某一期的趋势值,如此逐项递移求得一系列的移动平均数,形成一个新的、派生的平均数时间序列。在新的时间序列中偶然因素的影响被削弱,从而呈现出现象在较长时间的基本发展趋势。,中央财经大学统计学院 15,把时间序列连续 N 期的平均数作为最近一期(第t期)的趋势值:,N 期移动平均数,中央财经大学统计学院 16,把时间序列连续 N 期的平均数作为 N 期的中间一期的趋势值。如果N为奇数,则把N期的移动平均值作为中间一期的趋势值。如果N为偶数,须将移动平均数再进行一次两项移动平均,以调整趋势值的位置,使趋势值能对准某一时期)。相当于对原序列进行一次N+1 项移动平均,首末两个数据的权重为0.5,中间数据权重为1。,中心化移动平均,中央财经大学统计学院 17,Example 1,新卫机械厂的销售收入(万元):,中央财经大学统计学院 18,中心移动平均法,中央财经大学统计学院 19,移动平均的结果,中央财经大学统计学院 20,Example 2,移动平均法可以作为测定长期趋势的一种较为简单的方法,在股市技术分析中有广泛的应用。比如对某只股票的日收盘价格序列分别求一次5日、10日、一个月的移动平均就可以得到其5日、10日、一个月的移动平均股价序列,进而得到5日线、10日线、月线,用以反映股价变动的长期趋势。,中央财经大学统计学院 21,移动平均股价序列,中央财经大学统计学院 22,移动平均法一般用来消除不规则变动的影响,把序列进行修匀(smoothing),以观察序列的其他成分。如果移动平均的项数等于季节长度则可以消除季节成分的影响;如果移动平均的项数等于平均周期长度的倍数则可以消除循环变动的影响。由于区分长期趋势和循环变动比较困难,在应用中有时对二者不做区分,而是把两项合在一起称为“趋势循环”成分(trend-cycle)。,移动平均法的应用,中央财经大学统计学院 23,2、时间回归法(趋势方程法),使用回归分析中的最小二乘法,以时间t或t的函数为自变量拟合趋势方程。习惯上t的取值为从1到n。也可以取其他值,不同取值方法不会影响到方程的拟合效果。常用的趋势方程包括:线性趋势方程二次曲线指数曲线,中央财经大学统计学院 24,趋势线的选择,1、根据散点图观察数据的特点,结合理论分析和经验确定。2、比较不同回归模型的决定系数、估计标准误等指标。,中央财经大学统计学院 25,趋势方程的估计方法,趋势方程可以使用回归分析中的最小二乘法进行估计。对于线性趋势方程,根据回归分析中推导出的结果,有,中央财经大学统计学院 26,Example 1:新卫机械厂的销售收入,中央财经大学统计学院 27,Excel的计算结果,中央财经大学统计学院 28,趋势方程,中央财经大学统计学院 29,Example 2:销售额时间序列,中央财经大学统计学院 30,8.1.4 时间序列季节变动分析,测定目的:确定现象的季节变化规律以用于预测消除时间序列中的季节因素测定季节变动,一般需要先从原时间序列中剔除可能存在的长期趋势,因此需要在一定的模型假定下进行,也有不同的计算方法。实际中乘法模型较为常用,下面以乘法模型为例,介绍移动平均剔除法(ratio-to-moving-average method)。,中央财经大学统计学院 31,季节指数,乘法模型中的季节成分通过季节指数来反映。季节指数(季节比率):反映季节变动的相对数。1、月(或季)的指数之和等于1200%(或400%)。2、季节指数离100越远,季节变动程度越大,数据越远离其趋势值。,中央财经大学统计学院 32,用移动平均趋势剔除法计算季节指数,1、计算移动平均值(TC),移动期数为4或12,注意需要进行移正操作。2、从序列中剔除移动平均值(SIY/TC)。3、4、如果季节系数之和不等于为400%或1200%,需要用调整系数调整。,中央财经大学统计学院 33,案例:海鹏网球中心的利润。,中央财经大学统计学院 34,季节指数的计算,270/180*100%,中央财经大学统计学院 35,季节指数的计算,中央财经大学统计学院 36,季节指数的图形,中央财经大学统计学院 37,季节调整(Seasonal Adjustment),将原序列实际数值除以季节指数可以消除季节变动的影响。此数列通常被称为“季节调整后的序列”,它便于较为准确地分析长期趋势和循环变动。,中央财经大学统计学院 38,对销售额时间序列,分别利用乘法模型和加法模型由SPSS软件计算出的季节指数和季节因素后,可以看出,销售旺季为8月份,淡季为12月份。,销售额时间序列的例子(SPSS软件),中央财经大学统计学院 39,时间序列图形,从数据图可以看出,销售额时间序列的季节变化并未表现出与长期趋势明显的依赖性,因此,使用加法模型分析该销售额时间序列的季节变动较为合适。,销售额时间序列的例子,中央财经大学统计学院 41,销售额时间序列的季节变动(加法模型),销售额时间序列的例子,中央财经大学统计学院 42,8.1.5 时间序列循环变动分析,实际中常采用剩余法测定循环变动。这种方法须先从原时间序列中消除长期趋势、季节变动和不规则变动,求得循环变动指数。计算步骤:1、如果有季节成分,计算季节指数,得到季节调整后的数据(TCI);2、根据趋势方程从季节调整后的数据中消除长期趋势得到序列CI;3、对消去季节成分和趋势值的序列CI进行移动平均以消除不规则波动,得到循环变动成分C。,中央财经大学统计学院 43,循环变动,Trend=112.67+17.845t,趋势方程也可根据未进行季节调整的序列估计.,中央财经大学统计学院 44,循环变动的图形,由于只有4年的数据,本例的结果只是说明性的,从结果中还无法看到现象在更长时期内的循环变动情况。有时对长期趋势和循环变动不做区分,而是合在一起称为“趋势循环”成分。,中央财经大学统计学院 45,不规则变动,如果需要,还可以进一步分解出不规则变动成分:,中央财经大学统计学院 46,8.1.6 时间序列分解预测法,预测是时间序列分析的重要目的之一分解预测法就是依据时间序列的结构模型将序列中的各种非随机成分分离出来,分别进行预测,最后将各部分预测值合成总的预测值。这种方法直观易懂并可以提供较多有用的信息,从不同的方面把握数据的变化特征。,中央财经大学统计学院 47,由建立的趋势模型得到,可用同期季节指数代替,可用半定量化方法预测,即根据分离出的循环变动指数的变化趋势,主观判断取值的大小。若循环变动不明显,可忽略。有时候和长期趋势合在一起预测。,以乘法模型为例,中央财经大学统计学院 48,为了考察预测效果,利用1990.12001.12数据对2002年各月的销售额进行预测,这样可以计算预测误差。首先原始序列进行成分分解,这里我们选择乘法模型(分析预测季节性分解),得到序列的季节指数和季节调整后的序列。,Example:销售额时间序列分解法预测(SPSS),中央财经大学统计学院 49,根据季节调整后的序列(包含TCI成分)拟合二次趋势方程。因为t在模型中不显著,被从模型中剔除注:也可以根据原始数据拟合趋势方程;或者对原始序列的12期中心化移动平均序列(包含TC成分)建立趋势模型。,Example:销售额时间序列分解法预测(SPSS):长期趋势的估计,中央财经大学统计学院 50,利用二次模型预测出2002年各月份的销售额的趋势值,再乘以季节指数就可以得到2002年各月份的销售额的预测值。,Example:销售额时间序列分解法预测(SPSS),中央财经大学统计学院 51,销售额时间序列与分解法预测(乘法模型),中央财经大学统计学院 52,预测误差的测度指标,衡量预测误差大小的常用指标主要有:1、平均绝对误差(Mean Absolute Error)2、均方误差(Mean Squared Error),中央财经大学统计学院 53,预测误差的测度指标,3、均方根误差(Root Mean Squared Error)4、平均绝对百分误差(Mean Absolute Percentage Error),用来衡量相对误差的大小。,中央财经大学统计学院 54,乘法模型的预测误差,中央财经大学统计学院 55,乘法模型的预测误差,MAE=2.86MSE=11.83RMSE=3.44MAPE=2.91%,中央财经大学统计学院 56,8.2 指数平滑 Exponential smoothing,8.2.1 单参数(一次)指数平滑 8.2.2 双参数指数平滑 8.2.3 三参数指数平滑,中央财经大学统计学院 57,指数平滑方法的基本原理,指数平滑是一种加权移动平均,既可以用来描述时间序列的变化趋势,也可以实现时间序列的预测。指数平滑预测的基本原理是:用时间序列过去取值的加权平均作为未来的预测值,离当前时刻越近的取值,其权重越大。,中央财经大学统计学院 58,式中:,表示时间序列第t+1期的预测值;,表示时间序列第t期的实际观测值;,表示时间序列第t期的预测值;,表示平滑系数,0,1。,8.2.1 单参数(一次)指数平滑,单参数指数平滑的模型为:,中央财经大学统计学院 59,适用场合,单参数(一次)指数平滑适用于不包含长期趋势和季节成分的时间序列预测 如果原序列有增长趋势,平滑序列将系统的低于实际值如果原序列有下降趋势,平滑序列将系统的高于实际值,中央财经大学统计学院 60,平滑系数的确定,选择合适的平滑系数是提高预测精度的关键。如果序列波动较小,则平滑系数应取小一些,不同时期数据的权数差别小一些,使预测模型能包含更多历史数据的信息;如果序列趋势波动较大,则平滑系数应取得大一些。这样,可以给近期数据较大的权数,以使预测模型更好地适序列趋势的变化。统计软件中可以根据拟合误差的大小自动筛选最优的平滑系数值。,中央财经大学统计学院 61,初始预测值的确定,初始预测值的确定等于第一个观测值 等于前k个值的算术平均适用场合:单参数(一次)指数平滑适用于不包含长期趋势和季节成分的平稳时间序列预测,中央财经大学统计学院 62,案例分析,新卫机械厂销售额的单参数指数平滑预测分析预测创建模型方法选择“指数平滑”;根据需要设置“条件”。拟合情况与2年的预测值(下页图)。SPSS Statistics 估计的a=0.689.拟合数据的MAPE=12.847%.,中央财经大学统计学院 63,单参数指数平滑的图形结果,中央财经大学统计学院 64,8.2.2 双参数指数平滑,双参数指数平滑包含两个平滑参数适用于包含长期趋势、不包含季节成分的时间序列预测。其基本思想是:首先对序列选定其随时间变化的线性模型,再通过对序列水平和增长量分别进行平滑来估计模型中的参数。,中央财经大学统计学院 65,双参数指数平滑模型,第一个平滑方程得到原序列经趋势调整的平滑值,第二个平滑方程是对增量进行指数平滑。初始值取为:,中央财经大学统计学院 66,应用实例,利用指数平滑法对我国人均原油产量(单位:公斤/人)进行预测。从图形看具有增长趋势,可以用双参数指数平滑法进行预测。,中央财经大学统计学院 67,应用实例,软件操作:分析预测创建模型方法选择“指数平滑”;根据需要设置“条件”(选择Holt线性趋势模型)由SPSS软件搜索出的最终平滑系数、,分别为1.00和0.001,预测2007-2010年我国人均原油产量的预测值分别为:141.74 142.56 143.37 144.18,中央财经大学统计学院 68,图形,中央财经大学统计学院 69,双参数指数平滑预测新卫机械厂的销售收入,估计的a=0.018,b=0.000.历史数据MAPE=9.837%.,中央财经大学统计学院 70,预测图形,中央财经大学统计学院 71,8.2.3 三参数指数平滑,对于包含季节变动(和长期趋势)的时间序列进行预测常用温特(Winter)指数平滑法。该法包含三个平滑系数,是依据时间序列的乘法(或加法)结构模型,在每一步平滑中将原始时间序列分解成趋势成分和季节成分并对它们分别进行平滑。,中央财经大学统计学院 72,三参数指数平滑模型,预测公式(L为季节长度),中央财经大学统计学院 73,例子:销售额时间序列,某企业1990-2002年各月销售额数据。,中央财经大学统计学院 74,Example:销售额时间序列的温特指数平滑预测,软件操作:分析预测创建模型方法选择“指数平滑”;设置“条件”,选择季节性模型中的“Winter(冬季)加法或乘法模型),这里选的是乘法模型。从图形看拟合效果很好。,中央财经大学统计学院 75,Example:销售额时间序列的温特指数平滑预测,中央财经大学统计学院 76,8.3 ARIMA模型,8.2.1 平稳时间序列模型(ARMA模型)8.2.2 ARIMA模型 ARIMA:Autoregressive Integrated Moving Average,中央财经大学统计学院 77,时间序列的平稳性,随机时间序列分析的一个重要概念是平稳性。时间序列平稳性的直观含义是指时间序列没有明显的长期趋势、循环变动和季节变动。从统计意义上讲,如果序列的一、二阶矩存在,而且对任意时刻满足:(1)均值为常数;(2)协方差仅与时间间隔有关,则称该序列为宽平稳时间序列,也叫广义平稳时间序列。,中央财经大学统计学院 78,非平稳序列 平稳序列,时间序列的平稳性(图形),中央财经大学统计学院 79,是互不相关的序列,且均值为零,方差 为(即为白噪声序列),一般假定其服从正态分布。,为零均值平稳时间序列,1 平稳时间序列模型,(1)ARMA模型的基本形式 P阶自回归(Autoregressive)模型AR(p),中央财经大学统计学院 80,平稳时间序列模型,滑动平均(Moving Average)模型-MA(q)自回归滑动平均(Autoregressive and Moving Average)模型 ARMA(p,q),中央财经大学统计学院 81,一个模拟的AR(1)序列,中央财经大学统计学院 82,一个模拟的MA(1)序列,中央财经大学统计学院 83,有均值项的ARMA模型,对于均值是否为零未知的情况下,建模时需要给ARMA模型加上一个均值项。AR模型:MA模型ARMA模型,中央财经大学统计学院 84,(2)ARMA模型的识别与估计,Box-Jenkins 的模型识别方法:根据ACF和PACF确定模型的形式。自相关函数(ACF)描述时间序列观测值与其过去的观测值之间的线性相关性。偏自相关函数(PACF)描述在给定中间观测值的条件下时间序列观测值与其过去的观测值之间的线性相关性。,中央财经大学统计学院 85,模型(序列)AR(p)MA(q)ARMA(p,q)自相关函数 拖尾 第q个后截尾 拖尾偏自相关函数 第p个后截尾 拖尾 拖尾,拖尾是指以指数率单调或振荡衰减,截尾是指从某个开始非常小(不显著非零)。,Box-Jenkins 的模型识别方法,中央财经大学统计学院 86,Example:一个零均值时间序列,中央财经大学统计学院 87,下图图中横线为0两倍标准差,可以判断ACF和PACF是否显著非零)。可以看出ACF呈拖尾状,PACF第2个后截尾,可初步断定序列适合AR(2)模型。,一个零均值时间序列的ACF和PACF,ACF拖尾,PACF截尾,中央财经大学统计学院 88,模型阶数的确定,对于AR或MA模型,利用ACF和PACF判定模型类型的同时也就初步断定了模型的阶数。对于ARMA模型来说,用ACF和PACF判定其阶次有一定的困难。此时可以借助于下面介绍的信息准则。,中央财经大学统计学院 89,模型阶数的确定(ARMA)*,实际中常用的准则函数是AIC信息准则和BIC信息准则(也称为Schwarz信息准则,记为SIC),使准则函数达到极小的是最佳模型。是对序列拟合ARMA(p,q)模型的残差方差,N为观测值的个数。相对于AIC信息准则,BIC信息准则更多的考虑了模型的参数个数。,中央财经大学统计学院 90,ARMA模型的参数估计,对时间序列所适合的ARMA模型进行初步识别后,接下来就需要估计出其中的参数,以便进一步识别和应用模型。主要的参数估计方法有矩估计法、最小二乘估计法和极大似然估计法等,一般都由计算机软件实现,这里不作介绍。,中央财经大学统计学院 91,(3)ARMA模型的适应性检验,模型的适应性检验主要是残差序列的独立性检验。残差序列可由估计出来的模型计算得到。如果残差序列的自相关函数不显著非零,可以认为是独立的。,中央财经大学统计学院 92,例1:AR模型,对前面例子,由SPSS可以得到参数估计,模型表达式为:括号中为参数的t检验值,各参数都是显著的。,中央财经大学统计学院 93,例1:AR模型,由下图可以看出残差不存在显著的自相关性,可以认为是独立的,因而模型是适应的。,中央财经大学统计学院 94,例2:MA模型,根据某化学过程读数拟合ARMA模型。,中央财经大学统计学院 95,例2:MA模型,ACF PACF根据ACF可以尝试MA(2)模型根据PACF可以尝试AR(1)模型,中央财经大学统计学院 96,MA(2)模型,模型的正态化的BIC=4.969R2=0.179,中央财经大学统计学院 97,MA(2)的拟合效果图,中央财经大学统计学院 98,残差自相关图(MA(2)模型),根据残差自相关图判断MA(2)模型是适合的。,中央财经大学统计学院 99,建立AR(1)模型的结果,也就是模型的正态化的BIC=4.91;R2=0.166根据BIC分析 AR(1)要好一点。,中央财经大学统计学院 100,AR(1)的拟合效果图,中央财经大学统计学院 101,残差自相关图(AR(1)模型),根据残差自相关图判断AR(1)模型是适合的。,中央财经大学统计学院 102,8.2.2 ARIMA模型,在实际问题中我们常遇到的序列,特别是反映社会、经济现象的序列,大多数并不平稳,而是呈现出明显的趋势性或季节性。对于有趋势性时间序列通常采用ARIMA模型进行分析。对于有季节性的时间序列可以采用乘积季节ARIMA模型进行预测。由于这类模型比较复杂,本课程不做介绍。,中央财经大学统计学院 103,差分(Difference)运算,ARIMA模型需要用到差分工具。用原序列的每一个观测值减去其前面的一个观测值,就形成原序列的一阶差分序列:对一阶差分后的序列再进行一次差分运算,称为二阶差分。,中央财经大学统计学院 104,差分(Difference)运算,一阶差分可以消除原序列存在的线性趋势。有时候需要进行高阶差分才能够使得变换后的时间序列平稳。大部分经济时间序列进行一阶或二阶差分后都可以变为平稳序列。对有季节性的时间序列,进行季节差分(当年的可以消除季节成分:,中央财经大学统计学院 105,ARIMA模型,一般地,如果d阶差分序列 是平稳的,并且适合ARMA(p,q)模型,即也就是因为求和是差分运算的反运算,所以该模型称为求和自回归滑动平均模型,记为ARIMA(p,d,q)。,中央财经大学统计学院 106,该序列有增长的趋势,首先对其进行一阶差分,原序列及一阶差分后序列如图所示。,Example8.4:某中部省会城市房地产价格数据,中央财经大学统计学院 107,ARIMA模型例子,差分后序列的自相关和偏自相关函数如下图所示。可以看出ACF第一个后截尾,PACF呈拖尾状,初步判定差分后序列适合MA(1)模型,即原序列适合ARIMA(0,1,1)模型。,中央财经大学统计学院 108,由SPSS得到参数估计,BIC=10.763,中央财经大学统计学院 109,模型的残差自相关,下图为残差序列的自相关函数,可以认为是独立的,对房地产价格数据建立的ARIMA(0,1,1)模型是适应的。,中央财经大学统计学院 110,利用该模型可以对房地产价格进行预测,下图是实际值、拟合值以及预测值图示。,实际值、拟合值以及预测值图示,中央财经大学统计学院 111,ARIMA(1,1,0)模型,BIC=10.838,略高于ARIMA(0,1,1)。,中央财经大学统计学院 112,模型的残差自相关(ARIMA(1,1,0),下图为残差序列的自相关函数,可以认为是独立的,对房地产价格数据建立的ARIMA(1,1,0)模型是适应的。,中央财经大学统计学院 113,ARIMA(1,1,0)模型。,实际值、拟合值以及预测值图示,中央财经大学统计学院 114,SPSS Statistics 可以自动选择p,d,p的值,在实际应用中,可以让SPSS 软件根据设定的规则自动筛选“最优”的模型。在“方法”中选择“专家建模器”,在“条件”中选择ARIMA模型。在例8.4中,不指定p d q的值,SPSS Statistics 选择的是ARIMA(0,1,1)模型。,中央财经大学统计学院 115,时间序列预测的一个基本假设是:现象在过去的发展趋势会在未来保持下去。如果外部环境发生了重大变化,预测结果很可能是不可靠的。对历史数据拟合最好的模型预测效果不一定是最好的。复杂的模型不一定比简单的模型预测效果好。实际应用中不能机械的根据模型的评价指标选择模型,而应结合定性的分析。,关于统计预测的几点说明,中央财经大学统计学院 116,本章小结,1、时间序列分解:长期趋势分析、季节变动分析、循环变动分析、分解法预测2、指数平滑预测法 单参数(一次)指数平滑 双参数指数平滑 三参数指数平滑3、ARIMA模型 模型识别 模型检验 预测,

    注意事项

    本文(第8章 时间序列分析(1).ppt)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开