手拉手模型.doc
全等三角形-手拉手模型例题1、在直线ABC的同一侧作两个等边三角形ABD和BCE,连接AE与CD,证明:(1) ABEDBC(2) AE=DC(3) AE与DC的夹角为60。(4) AGBDFB(5) EGBCFB(6) BH平分AHC(7) GFAC变式练习1、如果两个等边三角形ABD和BCE,连接AE与CD,证明:(1) ABEDBC(2) AE=DC(3) AE与DC的夹角为60。(4) AE与DC的交点设为H,BH平分AHC变式练习2:如果两个等边三角形ABD和BCE,连接AE与CD,证明:(1) ABEDBC(2) AE=DC(3) AE与DC的夹角为60。(4)AE与DC的交点设为H,BH平分AHC例题2:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H问:(1)ADGCDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分AHE?例题3:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问 (1)ADGCDE是否成立?(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分AHE?例题4:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,ABD=CBE=a 连接AE与CD. 问(1)ABEDBC是否成立?(2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度?(4)HB是否平分AHC?