欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    1963942275材料力学第8章 轴向拉伸与压缩.ppt

    • 资源ID:2428278       资源大小:7.32MB        全文页数:109页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1963942275材料力学第8章 轴向拉伸与压缩.ppt

    ,第8章,材料力学,轴向拉伸与压缩,拉伸和压缩是杆件基本受力与变形形式中最简单的一种,所涉及的一些基本原理与方法比较简单,但在材料力学中却有一定的普遍意义。,本章主要介绍杆件承受拉伸和压缩的基本问题,包括:内力、应力、变形;材料在拉伸和压缩时的力学性能以及强度设计。本章的目的是使读者对弹性静力学有一个初步的、比较全面的了解。,第8章 轴向拉伸与压缩,承受轴向载荷的拉(压)杆在工程中的应用非常广泛。,一些机器和结构中所用的各种紧固螺栓,在紧固时,要对螺栓施加预紧力,螺栓承受轴向拉力,将发生伸长变形。,第8章 轴向拉伸与压缩,承受轴向载荷的拉(压)杆在工程中的应用非常广泛。,由汽缸、活塞、连杆所组成的机构中,不仅连接汽缸缸体和汽缸盖的螺栓承受轴向拉力,带动活塞运动的连杆由于两端都是铰链约束,因而也是承受轴向载荷的杆件。,第8章 轴向拉伸与压缩,此外,起吊重物的钢索、桥梁桁架结构中的杆件等,也都是承受拉伸或压缩的杆件。,第8章 轴向拉伸与压缩,第8章 轴向拉伸与压缩,斜拉桥承受拉力的钢缆,第8章 轴向拉伸与压缩,轴力与轴力图,胡克定律拉压杆件的变形,结论与讨论,拉压杆的应力与圣维南原理,材料在拉伸与压缩时的力学性能,应力集中的概念,失效、许用应力与强度条件,简单拉压静不定问题,连接部分的强度计算,第8章 轴向拉伸与压缩,轴力与轴力图,第8章 轴向拉伸与压缩,当所有外力均沿杆的轴线方向作用时,杆的横截面上只有沿轴线方向的一个内力分量,这个内力分量称为“轴力”(normal force)用FN 表示。表示轴力沿杆轴线方向变化的图形,称为轴力图(diagram of normal forces)。,为了绘制轴力图,杆件上同一处两侧横截面上的轴力必须具有相同的正负号。因此,约定使杆件受拉的轴力为正,受压的轴力为负。,轴力与轴力图,第8章 轴向拉伸与压缩,绘制轴力图的方法与步骤如下:,其次,根据杆件上作用的载荷以及约束力,轴力图的分段点:在有集中力作用处即为轴力图的分段点;,第三,应用截面法,用假想截面从控制面处将杆件截开,在截开的截面上,画出未知轴力,并假设为正方向;对截开的部分杆件建立平衡方程,确定轴力的大小与正负:产生拉伸变形的轴力为正,产生压缩变形的轴力为负;,最后,建立FNx坐标系,将所求得的轴力值标在坐标系中,画出轴力图。,首先,确定作用在杆件上的外载荷与约束力;,轴力与轴力图,第8章 轴向拉伸与压缩,直杆,A端固定,在B、C两处作用有集中载荷F1和F2,其中F15 kN,F210 kN。,试画出:杆件的轴力图。,例题1,解:1.确定A处的约束力,A处虽然是固定端约束,但由于杆件只有轴向载荷作用,所以只有一个轴向的约束力FA。,求得 FA5 kN,由平衡方程,轴力与轴力图,第8章 轴向拉伸与压缩,解:2.确定控制面,3.应用截面法求控制面上的轴力 用假想截面分别从控制面A、B、B、C处将杆截开,假设横截面上的轴力均为正方向(拉力),并考察截开后下面部分的平衡。,在集中载荷F2、约束力FA作用处的A、C截面,以及集中载荷F1作用点B处的上、下两侧横截面都是控制面。,轴力与轴力图,第8章 轴向拉伸与压缩,3.应用截面法求控制面上的轴力 用假想截面分别从控制面A、B、B、C处将杆截开,假设横截面上的轴力均为正方向(拉力),并考察截开后下面部分的平衡,求得各截面上的轴力:,轴力与轴力图,第8章 轴向拉伸与压缩,3.应用截面法求控制面上的轴力 用假想截面分别从控制面A、B、B、C处将杆截开,假设横截面上的轴力均为正方向(拉力),并考察截开后下面部分的平衡,求得各截面上的轴力:,轴力与轴力图,第8章 轴向拉伸与压缩,3.应用截面法求控制面上的轴力 用假想截面分别从控制面A、B、B、C处将杆截开,假设横截面上的轴力均为正方向(拉力),并考察截开后下面部分的平衡,求得各截面上的轴力:,轴力与轴力图,第8章 轴向拉伸与压缩,3.应用截面法求控制面上的轴力 用假想截面分别从控制面A、B、B、C处将杆截开,假设横截面上的轴力均为正方向(拉力),并考察截开后下面部分的平衡,求得各截面上的轴力:,轴力与轴力图,第8章 轴向拉伸与压缩,4.建立FN-x坐标系,画轴力图,FN-x 坐标系中x坐标轴沿着杆件的轴线方向,FN坐标轴垂直于x轴。,将所求得的各控制面上的轴力标在FN-x 坐标系中,得到a、b、b和c四点。因为在A、B之间以及B、C之间,没有其他外力作用,故这两段中的轴力分别与A(或B)截面以及C(或B)截面相同。这表明a点与b点之间以及c点与b点之间的轴力图为平行于x轴的直线。于是,得到杆的轴力图。,轴力与轴力图,第8章 轴向拉伸与压缩,轴力与轴力图,第8章 轴向拉伸与压缩,根据以上分析,绘制轴力图的方法,确定约束力;,根据杆件上作用的载荷以及约束力,确定控制面,也就是轴力图的分段点;,应用截面法,用假想截面从控制面处将杆件截开,在截开的截面上,画出未知轴力,并假设为正方向;对截开的部分杆件建立平衡方程,确定控制面上的轴力,建立FNx坐标系,将所求得的轴力值标在坐标系中,画出轴力图。,轴力与轴力图,第8章 轴向拉伸与压缩,拉压杆的应力与圣维南原理,第8章 轴向拉伸与压缩,当外力沿着杆件的轴线作用时,其横截面上只有轴力一个内力分量。与轴力相对应,杆件横截面上将只有正应力。,拉压杆的应力,第8章 轴向拉伸与压缩,在很多情形下,杆件在轴力作用下产生均匀的伸长或缩短变形,因此,根据材料均匀性的假定,杆件横截面上的应力均匀分布,这时横截面上的正应力为,其中FN横截面上的轴力,由截面法求得;A横截面面积。,拉压杆的应力,第8章 轴向拉伸与压缩,例题2,变截面直杆,ADE段为铜制,EBC段为钢制;在A、D、B、C等4处承受轴向载荷。已知:ADEB段杆的横截面面积AAB10102 mm2,BC段杆的横截面面积ABC5102 mm2;FP60 kN;各段杆的长度如图中所示,单位为mm。,试求:直杆横截面上的绝对值最大的正应力。,拉压杆的应力,第8章 轴向拉伸与压缩,解:1 作轴力图 由于直杆上作用有4个轴向载荷,而且AB段与BC段杆横截面面积不相等,为了确定直杆横截面上的最大正应力,必须首先确定各段杆的横截面上的轴力。,应用截面法,可以确定AD、DEB、BC段杆横截面上的轴力分别为:,FNAD2FP120 kN FNDEFNEBFP60 kN FNBCFP60 kN,拉压杆的应力,第8章 轴向拉伸与压缩,2计算直杆横截面上绝对值最大的正应力,横截面上绝对值最大的正应力将发生在轴力绝对值最大的横截面,或者横截面面积最小的横截面上。本例中,AD段轴力最大;BC段横截面面积最小。所以,最大正应力将发生在这两段杆的横截面上:,拉压杆的应力,第8章 轴向拉伸与压缩,例题3,三角架结构尺寸及受力如图所示。其中FP22.2 kN;钢杆BD的直径dl254 mm;钢梁CD的横截面面积A22.32103 mm2。,试求:杆BD与CD的横截面上的正应力。,拉压杆的应力,第8章 轴向拉伸与压缩,首先对组成三角架结构的构件作受力分析,因为B、C、D三处均为销钉连接,故BD与CD均为二力构件。由平衡方程,解:1受力分析,确定各杆的轴力,拉压杆的应力,第8章 轴向拉伸与压缩,解:1受力分析,确定各杆的轴力,2计算各杆的应力 应用拉、压杆件横截面上的正应力公式,BD杆与CD杆横截面上的正应力分别为:,拉压杆的应力,第8章 轴向拉伸与压缩,二、斜截面上的应力,CL2TU2,CL2TU2,圣维南原理,加力点附近区域的应力分布问题,圣维南原理,第8章 轴向拉伸与压缩,当杆端承受集中载荷或其他非均匀分布载荷时,杆件并非所有横截面都能保持平面,从而产生均匀的轴向变形。在这种情形下,上述正应力公式不是对杆件上的所有横截面都适用。,圣维南原理,第8章 轴向拉伸与压缩,圣维南原理(Saint-Venant principle):如果杆端两种外加力静力学等效,则距离加力点稍远处,静力学等效对应力分布的影响很小,可以忽略不计。,圣维南原理,第8章 轴向拉伸与压缩,材料在拉伸与压缩时的力学性能,第8章 轴向拉伸与压缩,通过拉伸与压缩实验,可以测得材料在轴向载荷作用下,从开始受力到最后破坏的全过程中应力和变形之间的关系曲线,称为应力应变曲线。应力应变曲线全面描述了材料从开始受力到最后破坏过程中的力学行为。由此即可确定不同材料发生强度失效时的应力值(称为强度指标)和表征材料塑性变形能力的韧性指标。,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,单向拉伸时材料的力学行为,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,进行拉伸实验,首先需要将被试验的材料按国家标准制成标准试样(standard specimen);然后将试样安装在试验机上,使试样承受轴向拉伸载荷。通过缓慢的加载过程,试验机自动记录下试样所受的载荷和变形,得到应力与应变的关系曲线,称为应力-应变曲线(stress-strain curve)。,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,为了得到应力-应变曲线,需要将给定的材料做成标准试样(specimen),在材料试验机上,进行拉伸或压缩实验(tensile test,compression test)。,试验时,试样通过卡具或夹具安装在试验机上。试验机通过上下夹头的相对移动将轴向载荷加在试样上。,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,低碳钢的拉伸力学性能,1.弹性阶段 oab,弹性变形:,外力卸去后能够恢复的变形,塑性变形(永久变形):,外力卸去后不能恢复的变形,这一阶段可分为:斜直线Oa和微弯曲线ab。,比例极限,弹性极限,屈服极限,2.屈服阶段 bc,上屈服极限,下屈服极限,表面磨光的试件,屈服时可在试件表面看见与轴线大致成45倾角的条纹。这是由于材料内部晶格之间相对滑移而形成的,称为滑移线。因为在45的斜截面上剪应力最大。,强化阶段的变形绝大部分是塑性变形,3.强化阶段 cd,强度极限,4.颈缩阶段 de,CL3TU6,比例极限p 屈服极限s 强度极限b,其中s和b是衡量材料强度的重要指标,材料拉伸实验视频,延伸率:,CL3TU6,截面收缩率:,CL3TU6,CL3TU7,冷作硬化现象经过退火后可消除,卸载定律:,冷作硬化,材料在卸载时应力与应变成直线关系,二、其它材料的拉伸实验,对于在拉伸过程中没有明显屈服阶段的材料,通常规定以产生0.2的塑性应变所对应的应力作为屈服极限,并称为名义屈服极限,用0.2来表示,CL3TU3,没有屈服现象和颈缩现象,只能测出其拉伸强度极限,CL3TU4,灰口铸铁的拉伸实验,韧性材料脆性材料,单向压缩时材料的力学行为,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,材料压缩实验,通常采用短试样。低碳钢压缩时的应力-应变曲线。与拉伸时的应力-应变曲线相比较,拉伸和压缩屈服前的曲线基本重合,即拉伸、压缩时的弹性模量及屈服应力相同,但屈服后,由于试样愈压愈扁,应力-应变曲线不断上升,试样不会发生破坏。,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,铸铁压缩时的应力-应变曲线,与拉伸时的应力-应变曲线不同的是,压缩时的强度极限远远大于拉伸时的数值,通常是拉伸强度极限的45倍。这种压缩强度极限明显高于拉伸强度极限的脆性材料,通常用于制作受压构件。,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,拉伸与压缩时材料的力学性能,第8章 轴向拉伸与压缩,应力集中概念,第8章 轴向拉伸与压缩,几何形状不连续处应力局部增大的现象,称为应力集中(stress concentration)。,应力集中概念,第8章 轴向拉伸与压缩,应力集中的程度用应力集中因数描述。应力集中处横截面上的应力最大值与不考虑应力集中时的应力值(称为名义应力)之比,称为应力集中因数(factor of stress concentration),用K表示:,应力集中概念,第8章 轴向拉伸与压缩,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,强度条件、安全因数与许用应力,三类强度计算问题,应用举例,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,强度条件、安全因数 与许用应力,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,所谓强度设计(strength design)是指将杆件中的最大应力限制在允许的范围内,以保证杆件正常工作,不仅不发生强度失效,而且还要具有一定的安全裕度。对于拉伸与压缩杆件,也就是杆件中的最大正应力满足:,这一表达式称为拉伸与压缩杆件的强度条件,又称为强度设计准则(criterion for strength design)。其中称为许用应力(allowable stress),与杆件的材料力学性能以及工程对杆件安全裕度的要求有关,由下式确定,式中0为材料的极限应力或危险应力(critical stress),由材料的拉伸实验确定;n为安全因数,对于不同的机器或结构,在相应的设计规范中都有不同的规定。,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,强度计算的依据是强度条件或强度设计准则。据此,可以解决三类强度问题。,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,三类强度计算问题,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,强度校核 已知杆件的几何尺寸、受力大小以及许用应力,校核杆件或结构的强度是否安全,也就是验证是否符合设计准则。如果符合,则杆件或结构的强度是安全的;否则,是不安全的。,?,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,强度设计 已知杆件的受力大小以及许用应力,根据设计准则,计算所需要的杆件横截面面积,进而设计处出合理的横截面尺寸。,式中FN和A分别为产生最大正应力的横截面上的轴力和面积。,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,确定许可载荷(allowable load)根据设计准则,确定杆件或结构所能承受的最大轴力,进而求得所能承受的外加载荷。,式中FP为许用载荷。,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,应用举例,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,例题5,可以绕铅垂轴OO1旋转的吊车中斜拉杆AC由两根50 mm50 mm5 mm的等边角钢组成,水平横梁AB由两根10号槽钢组成。AC杆和AB梁的材料都是Q235钢,许用应力 150 MPa。当行走小车位于A点时(小车的两个轮子之间的距离很小,小车作用在横梁上的力可以看作是作用在A点的集中力),杆和梁的自重忽略不计。,求:允许的最大起吊重量FW(包括行走小车和电动机的自重)。,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,解:1受力分析,因为所要求的是小车在A点时所能起吊的最大重量,这种情形下,AB梁与AC两杆的两端都可以简化为铰链连接。因而,可以得到吊车的计算模型。其中AB和 AC都是二力杆,二者分别承受压缩和拉伸。,FW,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,解:2确定二杆的轴力,以节点A为研究对象,并设AB和AC杆的轴力均为正方向,分别为FN1和FN2。根据节点A的受力图,由平衡条件,FW,FW,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,解:3 确定最大起吊重量,对于AB杆,由型钢表查得单根10号槽钢的横截面面积为12.74 cm2,注意到AB杆由两根槽钢组成,因此,杆横截面上的正应力,将其代入强度设计准则,得到,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,解:3 确定最大起吊重量,由此解出保证AB杆强度安全所能承受的最大起吊重量,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,将其代入强度设计准则,得到,由此解出保证AC杆强度安全所能承受的最大起吊重量,对于AC杆,解:3 确定最大起吊重量,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,解:3 确定最大起吊重量,为保证整个吊车结构的强度安全,吊车所能起吊的最大重量,应取上述FW1和FW2中较小者。于是,吊车的最大起吊重量:,FW57.6 kN,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,4本例讨论,其中A1为单根槽钢的横截面面积。,根据以上分析,在最大起吊重量FW57.6 kN的情形下,显然AB杆的强度尚有富裕。因此,为了节省材料,同时还可以减轻吊车结构的重量,可以重新设计AB杆的横截面尺寸。根据强度设计准则,有,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,其中A1为单根槽钢的横截面面积。,4本例讨论,由型钢表可以查得,5号槽钢即可满足这一要求。,这种设计实际上是一种等强度的设计,是在保证构件与结构安全的前提下,最经济合理的设计。,失效、许用应力与强度条件,第8章 轴向拉伸与压缩,胡克定律与拉压杆的变形,胡克定律与拉压杆的变形,第8章 轴向拉伸与压缩,胡克定律,第8章 轴向拉伸与压缩,引进比例系数E,得到胡克定律:,1676年罗伯特胡克发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。两年后他公布了谜底:ut tensio sic vis,意思是“力如伸长(那样变化)”,E 称为弹性模量,量纲N/m2,对于杆件沿长度方向均匀变形的情形,其相对伸长量 l/l 表示轴向变形的程度,是这种情形下杆件的正应变,用 x 表示。,相对变形 正应变,第8章 轴向拉伸与压缩,拉、压杆件的变形分析,这是描述弹性范围内杆件承受轴向载荷时力与变形的胡克定律。其中,FP为作用在杆件两端的载荷;E为杆材料的弹性模量,它与正应力具有相同的单位;EA称为杆件的拉伸(或压缩)刚度(tensile or compression rigidity);式中“”号表示伸长变形;“”号表示缩短变形。,第8章 轴向拉伸与压缩,拉、压杆件的变形分析,绝对变形 弹性模量,当拉、压杆有二个以上的外力作用时,需要先画出轴力图,然后按上式分段计算各段的变形,各段变形的代数和即为杆的总伸长量(或缩短量):,绝对变形 弹性模量,第8章 轴向拉伸与压缩,拉、压杆件的变形分析,横向变形与泊松比,杆件承受轴向载荷时,除了轴向变形外,在垂直于杆件轴线方向也同时产生变形,称为横向变形。,实验结果表明,若在弹性范围内加载,轴向应变x与横向应变y之间存在下列关系:,为材料的另一个弹性常数,称为泊松比(Poisson ratio)。泊松比为无量纲量。,第8章 轴向拉伸与压缩,拉、压杆件的变形分析,例题6,变截面直杆,ADE段为铜制,EBC段为钢制;在A、D、B、C等4处承受轴向载荷。已知:ADEB段杆的横截面面积AAB10102 mm2,BC段杆的横截面面积ABC5102 mm2;FP60 kN;铜的弹性模量Ec100 GPa,钢的弹性模量Es210 GPa;各段杆的长度如图中所示,单位为mm。,试求:直杆的总变形量。,第8章 轴向拉伸与压缩,拉、压杆件的变形分析,解:1 作轴力图 由于直杆上作用有4个轴向载荷,而且AB段与BC段杆横截面面积不相等,为了确定直杆横截面上的最大正应力和杆的总变形量,必须首先确定各段杆的横截面上的轴力。,应用截面法,可以确定AD、DEB、BC段杆横截面上的轴力分别为:,FNAD2FP120 kN;FNDEFNEBFP60 kN;FNBCFP60 kN。,第8章 轴向拉伸与压缩,拉、压杆件的变形分析,2计算直杆的总变形量,直杆的总变形量等于各段杆变形量的代数和。:,在上述计算中,DE和EB段杆的横截面面积以及轴力虽然都相同,但由于材料不同,所以需要分段计算变形量。,第8章 轴向拉伸与压缩,拉、压杆件的变形分析,简单拉压静不定问题,第8章 轴向拉伸与压缩,求解静不定问题,除了根据静力平衡条件列出平衡方程外,还必须在多余约束处寻找各构件变形之间的关系,或者构件各部分变形之间的关系,这种变形之间的关系称为变形协调关系或变形协调条件(compatibility relations of deformation).,进而根据弹性范围内的力和变形之间关系(胡克定律),即物理条件,建立补充方程。,求解静不定问题需要综合考察平衡、变形和物理三方面,这是分析静不定问题的基本方法。现举例说明求解静不定问题的一般过程以及静不定结构的特性。,第8章 轴向拉伸与压缩,简单拉压静不定问题,两端固定的等截面直杆,杆件沿轴线方向承受一对大小相等、方向相反的集中力,假设杆件的拉伸与约束刚度为EA,其中E为材料的弹性模量,A为杆件的横截面面积。要求各段杆横截面上的轴力,并画出轴力图。,第8章 轴向拉伸与压缩,简单拉压静不定问题,首先,分析约束力,判断静不定次数。在轴向载荷的作用下,固定端A、B二处各有一个沿杆件轴线方向的约束力FA 和FB,独立的平衡方程只有一个,因此,所以除了平衡方程外,还需要一个补充方程。,第8章 轴向拉伸与压缩,简单拉压静不定问题,其次,为了建立补充方程,需要先建立变形协调方程。杆件在载荷与约束力作用下,AC、CD、DB等3段都要发生轴向变形,但是,由于两端都是固定端,杆件的总的轴向变形量必须等于零:,这就是变形协调条件。,第8章 轴向拉伸与压缩,简单拉压静不定问题,根据胡克定律,杆件各段的轴力与变形的关系:,此即物理方程。,应用截面法,上式中的轴力分别为FNACFA(压),FNCDFPFA(拉),FNDBFB(压),第8章 轴向拉伸与压缩,简单拉压静不定问题,最后将上述各式联立,即可解出两固定端的约束力:,FNACFA(压),FNCDFPFA(拉),FNDBFB(压),第8章 轴向拉伸与压缩,简单拉压静不定问题,将上述各式联立,即可解出两固定端的约束力:,据此即可求得直杆各段的轴力,画出直杆的轴力图。,第8章 轴向拉伸与压缩,简单拉压静不定问题,最后请大家从平衡或变形协调两方面分析这些图中的轴力图为什么是不正确的?,第8章 轴向拉伸与压缩,简单拉压静不定问题,连接部分的强度计算,第8章 轴向拉伸与压缩,第8章 轴向拉伸与压缩,连接部分的强度计算,剪切假定计算,第8章 轴向拉伸与压缩,连接部分的强度计算,剪切面,第8章 轴向拉伸与压缩,连接部分的强度计算,剪切面,第8章 轴向拉伸与压缩,连接部分的强度计算,设计准则,第8章 轴向拉伸与压缩,连接部分的强度计算,挤压假定计算,第8章 轴向拉伸与压缩,连接部分的强度计算,有效挤压面,连接件直径为d,连接板厚度为,则有效挤压面面积为d。,第8章 轴向拉伸与压缩,连接部分的强度计算,设计准则,第8章 轴向拉伸与压缩,连接部分的强度计算,

    注意事项

    本文(1963942275材料力学第8章 轴向拉伸与压缩.ppt)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开