欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    mariaortizppt.ppt

    • 资源ID:2407073       资源大小:946KB        全文页数:31页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    mariaortizppt.ppt

    1,UNIVERSITY OF REGINAFACULTY OF ENGINEERINGMaster of Applied Science In Industrial Engineering“AN INFERENCE SYSTEM APPROACH TO FINANCIAL MODELING”Maria M.Ortiz LermaDr.Rene V.MayorgaFall 2003,2,Contents,Thesis Objective Introduction Technical AnalysisScenario AnalysisPortfolio SelectionConclusion,3,Thesis Objective,The use of Intelligent Systems methodologies for the modeling of some systems behaviours characterized by highly non-linear relationships and having a high degree of uncertainty.In particular,the implementation of Artificial/Computational Intelligence and Soft Computing techniques in some Financial Engineering(closely related to Operations Research)problems.,4,Proposed Methodology,Here,it is proposed a novel Framework to use Adaptive Neuro-Fuzzy Inference System(ANFIS);and Fuzzy Inference Systems(FIS)for market indicators and prices modeling,and Optimization tools based on Mean-Variance method for portfolio(short term estimation)selection.In this framework it is necessary to consider three main components:,Technical AnalysisAdaptive Neuro-Fuzzy Inference System,Scenario AnalysisFuzzy Inference System,Portfolio SelectionOptimization tool,5,Introduction,Non-conventional Techniques:Increasing literature on Fuzzy Inference Systems(FIS)and their use in Financial Engineering;Many of these examples are related to stock market trading,Deboeck(1994),and recently Tseng et al.(2001)integrate Fuzzy and ARIMA models to forecast the Taiwan/US exchange rate.Artificial Neural Networks has been used as a tool for forecasting financial markets Peray(1999)determines an opportunity for equity fund investments using market fundamentals.,Conventional techniques:Optimization and Mean-Variance ModelAsymmetric risk measures for portfolio optimization under uncertainty(King,1993),and the arithmetic mean and the standard deviation of the different financial assets(Markowitz,1952,1987.Levy,1970),6,Introduction,Financial markets:Reasons of uncertainty Expansive fluctuations in prices over short and long termsEach model in portfolio selection has its own advantages and disadvantagesMarket risk cannot be avoided with diversificationLarge number of deals produced by agents that act independently from each otherThe effective operation of the portfolio selection in practice requires an integrated decision support framework,7,Framework General Structure,ANFIS,FUZZY INFERENCE SYSTEM,OPTIMIZA-TION,Inputs(ti),Outputs(ti+6),OutputsScenario(ti+6),Inputs,TECHNICAL ANALYSISSTAGE I,PRE-ANALYSIS,SCENARIO ANALYSISSTAGE II,PORTFOLIO SELECTIONSTAGE III,ANFIS,ANFIS,ANFIS,Inputs,Market indicator(ti+6),Market indicator(ti+6),Market indicator(ti+6),Price(ti+6),Market indicator(ti),Market indicator(ti),Market indicator(ti),Price(ti),Very Optimistic,Optimistic,Very Pessimistic,Pessimistic,Weakly Pessimistic,Medium Pessimistic,Hold,Weakly Optimistic,Medium Optimistic,8,Technical Analysis:Stage I,ANFIS,FUZZY INFERENCE SYSTEM,OPTIMIZA-TION,Inputs(ti),Outputs(ti+6),OutputsScenario(ti+6),Inputs,TECHNICAL ANALYSISSTAGE I,PRE-ANALYSIS,SCENARIO ANALYSISSTAGE II,PORTFOLIO SELECTIONSTAGE III,ANFIS,ANFIS,ANFIS,Inputs,Market indicator(ti+6),Market indicator(ti+6),Market indicator(ti+6),Price(ti+6),Market indicator(ti),Market indicator(ti),Market indicator(ti),Price(ti),Very Optimistic,Optimistic,Very Pessimistic,Pessimistic,Weakly Pessimistic,Medium Pessimistic,Hold,Weakly Optimistic,Medium Optimistic,Historical data from January 1st,1993 to August 29th,2003,9,Market indicators,a)Monetary,b)Sentiment,c)MomentumPricesRate of ChangeStochastic%KStochastic%D,10,Indexes,.,Dow Jones Average(DOW)DJ 65 Composite Average:DJANew York Stock Exchange(NYSE)NYSE Financial:FNANational Association of Securities Dealers Automated Quotation System(NASDAQ)259 Telecommunications:IXUTU.S.Treasury securities(Yieldx10)30 year bond:TYX,11,ANFIS Process,Time Series:Mackey-Glass Differential Delay Equation,Multidimensional input-output highly non-linear mapping,y=f(x).,The quantity of nodes,linear and non-linear parameters in the hidden layers is the same for each index,12,ANFIS Structure Information,13,ANFIS Process for Prices and Rate of Change in one index,N,N,N,N,x(t-18),R1(1),R1(2),x(t-12),R1(3),x(t-6),x(t),x(t+6),N,1,2,3,4,5,Price(ti+6)Y1(nT),R1(4),Price(ti)R1(nT),R(nT),Y(nT),N,N,N,N,x(t-18),R2(1),R2(2),x(t-12),R2(3),x(t-6),x(t),x(t+6),N,1,2,3,4,5,Rate of Change(ti+6)Y2(nT),R2(4),Rate of Change(ti)R2(nT),R(nT),Y(nT),x(t-18),x(t-12),x(t-6),and x(t)to predict x(t+6).,Inputs(ti),Outputs(ti+6),Hidden Layers 1 2 3,14,ANFIS Modeling Results:NYSE Financial FNA,15,NYSE Financial FNA:Price and Rate of Change modeling,16,NYSE Financial FNA:Stochastic%K and%D modeling,17,ANFIS modeling results for Market Indicators and Price in ti+6,18,Scenario Analysis:Stage II,ANFIS,FUZZY INFERENCE SYSTEM,OPTIMIZA-TION,Inputs(ti),OutputsScenario(ti+6),Inputs,TECHNICAL ANALYSISSTAGE I,PRE-ANALYSIS,SCENARIO ANALYSISSTAGE II,PORTFOLIO SELECTIONSTAGE III,ANFIS,ANFIS,ANFIS,Inputs,Market indicator(ti+6),Market indicator(ti+6),Market indicator(ti+6),Market indicator(ti+6),Market indicator(ti),Market indicator(ti),Market indicator(ti),Market indicator(ti),Very Optimistic,Optimistic,Very Pessimistic,Pessimistic,Weakly Pessimistic,Medium Pessimistic,Hold,Weakly Optimistic,Medium Optimistic,Inputs(ti+6),19,Fuzzy Inference System,18 fuzzy rules in the system Reasoning used to develop these fuzzy rules are statements such as:ScenarioIf the rate of change is large,(+)Optimisticthen the price is likely to move higherIf the stochastic%K is low,(-)Pessimisticthen the price is likely to move lower,1 0.5 0,20,Fuzzy Inference System,FUZZY INFERENCE SYSTEM,OUTPUTS SCENARIO(ti+6),INPUTS(ti+6),1.Very Pessimistic 2.Pessimistic3.Medium Pessimistic4.Weakly Pessimistic5.Hold6.Weakly Optimistic7.Medium Optimistic8.Optimistic9.Very Optimistic,FUZZY INFERENCE SYSTEM,FUZZY INFERENCE SYSTEM,FUZZY INFERENCE SYSTEM,1.Very low2.Low3.Medium low4.Weakly low 5.Stable6.Weakly large7.Medium Large8.Large9.Very large,Classification,21,Investment Scenario,22,Deffuzification for NFA,Defuzzification system for NFA index:inputs rules and output scenario,0 100,23,Investment Scenario for NFA,Weakly Optimistic scenario,NFA weakly optimistic scenario surface,24,Portfolio Selection:Stage III,ANFIS,FUZZY INFERENCE SYSTEM,OPTIMIZA-TION,Inputs(ti),Outputs(ti+6),OutputsScenario(ti+6),Inputs,TECHNICAL ANALYSISSTAGE I,PRE-ANALYSIS,SCENARIO ANALYSISSTAGE II,PORTFOLIO SELECTIONSTAGE III,ANFIS,ANFIS,ANFIS,Input,Market indicator(ti+6),Market indicator(ti+6),Market indicator(ti+6),Market indicator(ti+6),Market indicator(ti),Market indicator(ti),Market indicator(ti),Market indicator(ti),Very Optimistic,Optimistic,Very Pessimistic,Pessimistic,Weakly Pessimistic,Medium Pessimistic,Hold,Weakly Optimistic,Medium Optimistic,25,Securities from NYSE Financial,26,Mean-Variance Criterion,General Optimization Problem,Optimal portfolio must meet the following constraints:The sum of the portfolio weights must be equal to 1.The weight of each asset must be greater than or equal to zero.,Markowitz(1959)The return estimate is represented by the mean and asset risk is represented by the standard deviation,27,Portfolio Selection,Subject to,Objective function,The monthly return rates and risk are calculated for each one of the 430 assets in accordance with the Mean-Variance modelMonthly data from January 2nd 1997 to September 2nd,2003,28,Returns and Standard Deviations of the Optimal Interval for the Portfolio Selection,29,Optimal Portfolio Selection,30,Conclusions,This is an innovative methodology,principaly,because of the use of Soft Computer technologies such as,Fuzzy Inference Systems(FIS),and Adaptive Neuro-Fuzzy Inference Systems(ANFIS).In addition,the originality of this work consists in the application of the simulated framework where before solving financial problems based on future security values in the short term,we construct a good representation of this future.,31,Thank you,

    注意事项

    本文(mariaortizppt.ppt)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开