欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    图像的小波降噪.doc

    • 资源ID:2391642       资源大小:16KB        全文页数:2页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    图像的小波降噪.doc

    图像的小波降噪 图像的小波降噪 摘要:图像降噪1直是图像处理领域1个研究得比较多的课题,也是1个热点领域。其中小波变换降噪技术是被研究的最多1种技术,本文主要讨论近几年兴起的阈值降噪技术。2维小波分析用于图像降噪的步骤如下。   (1)2维图像信号的小波分解。在这1步,应当选择合适的小波和恰当的分解层次(记为N),然后对待分析的2维图像信号进行N层分解计算。(2)对分解后的高频系数进行阈值量化。对于分解的每1层,选择1个恰当的阈值,并对该层高频系数进行软阈值量化处理。(3)2维图像信号的小波重构。同样的,根据小波分解后的第N层的近似(低频系数)和经过阈值量化处理后的各层细节(高频系数),来计算2维信号的小波重构。还介绍了小波的数学基础。如:小波变换,小波离散及框架,多分辨率分析和Mallat算法的信号分解和重建过程。图像信号的小波降噪步骤和1维信号的降噪步骤完全相同,所不同的是,处理工具是用2维小波分析工具代替了1维小波分析工具。利用MATLAB 7 ,通过具体的例子来说明如何利用小波分析进行图像降噪这个问题。   关键字:图像降噪;小波分解;阈值量化;小波重构Denoising Image by Using Wavelet Abstract:Image noise reduction has been an area of image processing more research topics, as well as a hot field. Wavelet transform noise suppression technology is a study of the most technical, In this paper, we mainly discusses the noise suppression technology of noise threshold which is a method rising in recent years. Wavelet analysis for the two-dimensional image noise reduction steps are as follows.(1) The wavelet decomposition of two-dimensional image. In this step, we should choose a suitable and appropriate wavelet decomposition levels (recorded as N), then decompose the 2-D analyzed image signal into N layer decomposition. (2) Threshold Quantified about the high-frequency coefficients decomposed. For each level of decomposition, we choice an appropriate threshold, and decide the quantity of the soft threshold for high-frequency coefficients of this layer. (3) The reconstruction of two-dimensional image signal by using wavelet. Similarly, according to the approximation of the Nth level (coefficient of low frequency) decomposed by using wavelet and the various details (coefficient of high-frequency) after quantified for the threshold values, calculate the wavelet reconstruction for the two-dimensional signal.The mathematical base of wavelet also is introduced, such as: wavelets transformation, discrete wavelet and framework, multi-resolution analysis, Mallat algorithm for the process of decomposition and reconstruction of a signal.The steps of noise reduction by using wavelet for image signal are identical to the steps of one-dimensional signal noise reduction. The only difference is the process tools. It is using two-dimensional wavelet analysis tools instead of one-dimensional wavelet analysis tools. By using MATLAB 7, through specific examples illustrate how to use wavelet analysis to denoise for an image.Keywords: image noise reduction ( denoise of a image); decomposition applying wavelet; quantization of a threshold、reconstruction by using wavelet

    注意事项

    本文(图像的小波降噪.doc)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开