热能与动力工程专业英语译文第三章译文.doc
第三章 蒸汽轮机3.1 引言蒸汽轮机是最重要的涡轮发动机之一,是发电领域的主要原动机。本文简单讨论了作为蒸汽轮机发电厂部件之一的蒸汽轮机的作用。对于一个简单的蒸汽轮机发电厂,第一个部件就是把蒸汽提高到汽轮机所需压力和温度的蒸汽锅炉。蒸汽锅炉接受经过不同回热和热回收装置提高了温度的给水。在大多数电厂中,采用了过热蒸汽;大型电厂中,蒸汽在汽轮机的一些级中膨胀后,要经过一次或两次再热。 过热蒸汽经过调节阀进入蒸汽轮机。蒸汽轮机总是多级汽轮机,根据汽轮机容量的大小采用一个或多个缸。 在汽轮机中膨胀后的蒸汽在凝汽器中以低压凝结(0.0035 到 0.007 MPa)。凝结水以及抽汽用泵打入锅炉。3.1.1 蒸汽轮机的类型蒸汽轮机可用以下方式分为许多类型。根据流向 轴向 径向根据膨胀过程 冲动式 反动式 冲动反动混合式根据级的个数 单级 多级根据汽轮机入口结构 全周进汽 部分进汽根据汽流个数 单流 双流 单轴或双轴根据转速 N=3000rpm, f=50Hz N=3600rpm, f=60Hz N=1500rpm 变速机组根据应用 发电 工厂用 船用根据蒸汽参数 低压汽轮机,采用压力为0.12 到 0.2 MPa的蒸汽; 中压汽轮机,蒸汽压力达到0.2 MPa; 高压汽轮机,采用压力为0.2到16.8 MPa或更高压力,温度为535或更高温度的蒸汽; 超临界压力汽轮机,采用蒸汽压力为22.2 MPa或大于此压力。3.1.2 冲动式汽轮机冲动式汽轮机是指在转子中没有流体静压头改变的汽轮机。转子叶片仅仅引起能量的传递而没有任何能量的转变。由压能转变为动能或动能转变为压能的能量转换仅仅发生在静叶片中。如在冲动式汽轮机中,高速流体的动能传递到转子上仅仅由于作用在转子上的流体冲动力。图3-1给出了典型的冲动级速度三角形图。动叶出口蒸汽的相对速度(W2)小于动叶入口的相对速度(W1)。这表示了在动叶中发生了动能向机械功的转化。由于在冲动式汽轮机中转子叶片通道不会引起流体的任何加速,在叶片表面由于附面层的增加引起流体分离的机率要大一些。由此,冲动式汽轮机中转子叶片通道的损失较大,导致了较低的级效率。一些冲击机的例子是桨轮,博能同科轮和柯蒂斯汽轮机。uC1w1w2C2uuC1w1w2C2u图.3-1 冲动级速度三角形图 图.3-2 反动级速度三角形图U=动叶轮周速度, m/s c1 =动叶入口蒸汽的绝对速度, m/sC2 =动叶出口蒸汽绝对速度, m/s w1 =动叶入口蒸汽的相对速度, m/sw2 =动叶出口蒸汽相对速度, m/s3.1.3 反动式汽轮机涡轮机械级的反动度定义为转子中发生的压头改变与整级的全部压头改变之比。在转子叶片通道和静子叶片通道都有压头改变的涡轮机或级称作为反动式涡轮机或反动级。其中,在静叶和动叶中都有能量的转换。转子上既有能量传递又有能量转变。因此在反动式汽轮机中,由于流体的连续加速及较低的损失,它的效率应当高一些。一些反应机器的例子是英雄的涡轮,草坪喷灌和帕森汽轮机。 反动度为50%或一半的涡轮机有一些特殊的特点。反动度为50%的轴流式涡轮机和压缩机转子和静子上的叶片对称。对于反动度为50%的级,可看出它的出口和入口速度三角形也是对称的。图3-2给出了典型的反动级的速度三角形。动叶出口的蒸汽相对速度(W2)大于动叶入口的蒸汽相对速度(W1):这是由于动叶的焓降导致通过动叶的速度增加。3.1.4 多级汽轮机后面可以看到,当转速给定时,在涡轮机械的一级中,流体能量水平的改变是有限的。这对于涡轮机、压缩机、泵和吹灰器是一样的。因此,在能量水平改变很大的应用中,采用了多级。 在多级汽轮机中,可仅采用冲动级或采用反动级或冲动级和反动级的组合。冲动式汽轮机可采用许多压力级承担大的压降或许多速度级承担高的动能。还可同时采用速度级和压力级。在一定的压缩机中,同一个机械上采用了轴向流动的级和静向流动的级是有意义的。不同的级可安装在一个或多个轴上。在大型汽轮机中,锅炉出口和凝汽器入口的蒸汽压差非常大。如果汽轮机中只有一个级,那么就需要采用一个高转速的直径很大的转子,这不仅会使制造困难,而且会引起严重的强度和支承问题。一般说来,一个多级蒸汽轮机基本由下面几部分组成:(1) 汽缸,为了便于装配和拆卸,通常汽缸在水平中分面分开为两半,这两半由螺栓连接,用于支承静止叶片系统。(2) 转子,转子上有动叶片安装在叶轮上,以及还有叶轮。(3) 轴承箱 置于汽缸中,用于支承轴(4) 调节系统 依靠控制蒸汽流量,调节汽轮机转速和出力,还有用于轴承润滑的油系统和一组安全装置(5) 联轴器 用于转子的连接,并与发电机相连;(6) 管道 与汽缸入口蒸汽供给管道、汽缸出口排汽系统相连。3.2 汽缸结构汽轮机汽缸实质上是一个压力容器,在水平中心线的两端支撑它的重量。设计中要求在汽缸的横断面上,能承担管道的应力,而且沿汽缸的长度方向,要有一定的刚性从而维持汽轮机动静部分准确的间隙。汽缸由于内部通道的需要使得其设计复杂。所有的汽缸都从水平中分面分开,从而使转子能放入汽缸内和汽缸装配为一个整体。在汽缸的水平结合面上,设置了巨大的法兰和螺栓用以承担压力。相比汽缸的其余部分,相对厚重的法兰对温度变化的反应较慢,导致了不同的膨胀率,产生了温度应力和变形,尽管这些在汽轮机中已采用了法兰加热蒸汽使其减至最低程度。轴封汽室和蒸汽出入通道使得应力进一步复杂。高压和中压汽缸都是铸造结构,并且在横截面上采用圆形结构从而使得应力达到最小。法兰、螺栓、蒸汽出入通道和其他特征尽可能布置成对称结构,从而减少热不对称和由此引起的变形。低压汽缸可以采用装配结构或装配与铸造组合的结构。和所有的压力容器一样,汽缸在制造完后要进行液压试验检查设计的完善性,液压试验要进行最高工作压力150%的压力试验。3.2.1高压汽缸图3-3高压缸轴向剖面图 许多现代汽轮机,蒸汽压力超过10MPa并且功率大于100 MW,,采用了双层缸结构的高压汽缸。这是因为高压缸既要承担热和压应力,而又能灵活运行,这时设计单层缸结构是困难的。对于双层缸结构,缸间充满了处于排汽参数的蒸汽,从而使得每层缸都能设计成承担小温差和小压差的结构。在双层缸间靠近排汽端设置了挡板,这个挡板是内缸铸件的一部分。挡板向外延伸几乎达到外缸,但没有与外缸封住。高压缸的紊流排汽在挡板的作用下排入排汽管道,避免冷却内缸;这减小了内缸进汽端的温差及由此引起的应力。从高压缸进汽端内缸和转子间轴封泄漏的蒸汽用管子排向高压缸排汽处,从而使得双层缸间充满了处于排汽状态的蒸汽,并且通过外缸轴封泄漏在双层缸间维持小流量的蒸汽流动。较小的压差可以采用较薄的汽缸,这一点以及双层缸结构的较大的表面积,使得汽轮机在启动时能较快的暖机。另外薄汽缸还易于铸造,并且可能有较少的缺陷。在一些汽轮机中,采用了反向流叶片,其中蒸汽在其膨胀过程中的某处,从缸间返回以相反的方向继续流过最后的级。这种布置导致了较高的缸间压力和温度,在外缸应力增加的代价下减少了热内缸的应力。另外这种结构还使得以缸间参数抽汽的抽汽口结构简单,并且减少了高压转子的净推力。在一些现代汽轮机中,为了进一步减少热内缸的应力以及热变形,采用了三层缸结构,内缸置于一个没有水平结合面的筒状套筒中,(这种)内缸应力小,可以做得相对薄,这样法兰也不厚,而包着它的筒状汽缸应力相对高。然而,由于筒状汽缸没有法兰,厚度均匀,因此即使相对薄,仍可承担(一定的)应力。三层缸的这种形式,其中一个缺点是在装配和拆卸高压汽缸时麻烦。在装配中,需要把转子装入内、外下缸中,之后把内上缸装配好,然后把转子和内缸一块吊起,置于一个特殊的夹具上,使得筒状汽缸穿过。套好后,放下置于外缸的下半部分上,最后把上半外缸扣上即可。蒸汽进汽管道通过外缸,将蒸汽送入到内缸的进汽部分。进汽部分由内缸的一部分形成,这样确保入口蒸汽不直接与转子接触,而是必须首先流过喷嘴和第一列动叶栅。 当主蒸汽温度超过538时,有时会采用由耐热合金钢制造的单独喷嘴室结构,这样可以避免汽缸与最高温度的蒸汽接触。这种单独喷嘴室结构取代了进汽部分,把蒸汽从入口管道送入第一级喷嘴。一些国外机组采用喷嘴调节代替了节流调节。对于喷嘴调节,汽轮机的进汽部分分成几部分,每部分由顺序开启的调节阀控制,这样导致了更加复杂的铸造结构和强度要求更高的第一级动叶片。静叶片支撑在隔板上,隔板由靠近水平结合面和垂直中分线的键支撑和导向,从而允许同心膨胀。图3-3中高压缸的特征包括:双层缸,叶片支撑在内缸的隔板上,两个进汽管道对称布置,底部有两个抽汽管道,缸间有挡板,缸间靠近排汽端有键,外缸的两端都有立销,进汽管道上有热衬套,转子汽缸间有轴封。3.2.2中压汽缸现代再热机组中,设计中压缸时考虑的因素和高压缸相似,进入中压缸的蒸汽温度和高压缸相同,压力却低于高压缸压力。这使得中压缸可以薄点。一般而言,大于300MW功率的机组至少有一部分为双层缸支承前几级,之后的级由持环支持。内缸和持环都减少了作用在外缸上的压力和温度,也使得外缸的型线光滑,这使外缸设计和制造简单,热性能好。持环(的结构)使得汽缸的设计有较大的灵活性,因为当叶片改变时,不需要改变主要的汽缸,而且一个汽缸的设计能满足级的不同布置方式。图3-4中压缸轴向剖面图中压汽缸常为双流设计,并且在现代大型汽轮机上常常如此。采用单流还是双流主要根据叶片的设计和效率来决定,但是双流汽缸还有取消高压端轴封的优点。和高压汽缸一样,中压汽缸转子在进汽处要避免与高温蒸汽接触;中压汽缸上设有导流环结构,导流环将入口蒸汽引至喷嘴,同时在邻近转子的导流环中心还通有温度较低的高压缸排汽。导流环单独支撑在内缸的键上,或支持在第一级喷嘴内部。在中压缸的两个反向流中,叶片略有不同,导致两端的压力不同,从而部分内缸外形成了一股冷却汽流。这使得内缸外和螺栓的温度较低,从而可以采用小直径的螺栓。 图3-4中压缸的特征有:中间采用内缸,两端为持环结构,外缸上部有四个排汽口,底部有两个抽汽接口,进汽管道上设有热衬套,保护转子中心的导流环支撑在第一级喷嘴上,外缸的两端设有立销,外缸和转子之间有轴封。3.2.3低压汽缸低压汽缸常常是双层缸结构,其中内缸上有隔板支撑,抽汽和抽水接头,外缸将排汽引导至凝汽器并且为内缸提供结构上的支撑。然而,低压缸的结构并不常常如此,尤其是背篮式凝汽器,其对应的低压缸为单层缸结构。形体大的低压外缸以及它们所承受的低压负载使得低压缸尽可能采用装配式结构而不是铸造结构。更加复杂的内缸基于经济性考虑可采用装配式或铸造式。所有汽缸都采用螺栓连接它们的水平结合面。对于一个典型的低压汽缸,它的特征包括:装配式内缸、外缸;内缸上有抽汽口,排汽处有导叶,轴封支持在轴承上并且外缸上有膨胀节连接。3.3 汽轮机转子和联轴器3.3.1 转子结构类型在大型汽轮发电机组上,采用了四种不同类型的转子结构:· 整锻转子,其中叶轮和轴由一个锻件锻造而成(图. 3-5 (a)。· 套装轮盘转子,由分别锻造好的钢轴和钢制轮盘组成,其中钢制轮盘通过冷缩配合套装在钢轴上,并且利用键连接和定位(图.3-5 (b)。· 鼓形转子,由实心或空心锻件制造而成(图. 3-5 (c) and 3-5 (d)。· 焊接轮盘转子,这类转子在英国并不常见,有用于低压转子上的方式。在国外的应用中,包括高压和中压转子采用了这种类型。 由于各种各样的原因,四种类型的转子中,优先采用整锻转子,但是当锻件尺寸超过锻造能力时,采用了套装轮盘结构。目前,英国设计的660 MW机组全部采用了整锻转子。为了避免运行中的问题和疲劳裂纹,套装转子在冷缩配合和定位时需要非常仔细。虽然轮盘可能便于进行无损检测,但是整锻转子的无损检测能力已发展到能满足所有要求的程度。对于采用整锻转子的低压转子,有更好的刚性,从而有更好的动态性能。660 MW机组几乎无一例外的采用了这种结构的转子,并且试验结果很好。原来在实践中,沿着锻件轴心方向钻孔得到试验材料,从而可用来验证锻造质量。但是随着锻造技术和材料性能的提高,目前在一些设计中已经取消了中心孔结构。焊接转子的优点是锻件尺寸小,但需要有高的整体焊接技术,一些缺乏大型锻造能力的国家采用了焊接转子结构,他们已成功地制成焊接高、中和低压转子,在英国,只有有限数量的焊接低压转子。由中空柱体制成的高温鼓形转子,与短轴连接,易于产生不同的蠕变。在现在的设计中已由整锻鼓形转子取代。受末级叶片设计的限制,双流汽缸取代了高压缸所采用的单流设计。对于660MW机组的设计,中、低压缸的标准设计是采用双流设计。对于单流高压缸,在某种程度上,需要采用平衡活塞来平衡轴向推力,从而减少推力轴承负荷,尤其是反动式机组(动叶两端压降大)需采用面积大的平衡活塞。相反,相比反动级设计,采用冲动级的高压汽轮机转子,它的叶片节距直径降低。另外由于轴向推力更小,仅需要非常小的平衡活塞。3.3.2 转子材料图3-5汽轮机转子结构类型没有对应材料的发展,蒸汽轮机设计领域的发展是不可能的。高温下有好的抗蠕变性能的合金钢的发展以及有好的机械及高断裂韧性的其他合金钢的发展,是冶金领域重大成就的一个方面。另外生产能够在高温和低温下都适用的组件,验证了炼钢技术的进步。这些组件有很大的物理尺寸,而且有能够满足严格的内部缺陷要求的一致的材料性能。高温转子既要求蠕变强度、断裂强度,还要求一定的延展性。利用锻造的铬钼钒钢制造的转子能满足这些要求。铬钼钒合金刚是一种铁素体材料,能够提供可能最好的蠕变性能。对于低温转子,主要的要求是有相对高的伸张强度和高的韧性。由于3.5镍铬钼钒整锻转子锻件避免了套装转子冷缩配合时的复杂性,所以目前的转子采用了这种结构。对于套转低压转子,它的轴和轮盘都采用了镍含量高达3.5%的镍铬钼钒合金钢;对于大型整锻转子,为了获得整锻转子所必需的伸张性能,也首选这种合金钢材料。对于采用一系列实心轮盘组成的装配式低压转子的设计,需要一定的焊接技术。这时对于合金钢材的需求是矛盾的,一方面是对伸张强度的要求,另一方面是可焊接性的要求。因为低压转子可能在不超过周围环境温度很多的温度下运行。这样,提供防止脆性断裂的安全装置是重要的。对于轮盘、叶轮和整锻转子,使用可能最低的脆性转变温度的材料,采用严格的无损检测,以及断裂力学的评估都为低压转子的安全运行提供了必要的(框架)保证。3.5%NiCrMoV钢的FATT值低。在水淬冷和回火条件下,加上对材料成分的仔细控制,3.5%NiCrMoV钢的FATT值很好地低于环境温度,有高的抗拉性能以及随之而来的断裂韧性。3.3.3 超速试验所有大型汽轮发电机转子在制造时,都规定要做耐超速20%试验。这样在转子的运行转速范围内,能够保证很好的转子平衡。从而在由电网系统扰动引起的正常超速和超速螺栓试验中经常的10%超速中,能有足够的余度。另外对转子进行超速试验还能验证锻件,因为在超速运行时,转子的离心应力要大于常规运行中的离心应力,由此为衡量防止转子自发快速断裂的裕度提供了定量手段。3.3.4 转子平衡在装配好叶片后,需要对转子进行动平衡和静平衡。对于套装转子,在装配前须先对装好叶片的叶轮单独进行平衡。静平衡是指转子重量均匀地置于轴心周围。将转子置于水平放置的刀刃支撑上,滚动转子可进行静平衡检测。动平衡是指针对任一个轴承支撑,沿轴向方向转子不平衡重量的动量之和达到零。动平衡试验是将转子置于弹性支撑面上,转动转子同时测量振动,并且通过添加或减少重量一直到振动可忽略为止。3.3.5 临界转速支持在两个轴承之间的静止转子存在一个自振频率,自振频率的大小取决于转子的直径和轴承间距。如果转子转速对应于它的自振频率,残余的不平衡力会被放大并可能达到危险的程度。临界转速可高于运行转速,也可低于运行转速,这和转子结构有关。如果临界转速低于运行转速,我们称之为挠性轴。对于这种轴在启动时需要多加小心,以确保临界转速尽可能快地通过。随着转子长度增加,转子直径下降,临界转速会降低。现代大型机组的趋势是提供刚性转子(临界转速高于运行转速)。因为大型机组的转子长度增加(安装所需的动叶级数需要),随着转子直径的增大,达到了一定的刚性。大型机组的转子利用实心联轴器连接,因此可能由几个单独的转子组成的轴应该作为一个整体来对待。每个转子都支撑在两个轴承上,这些轴承支撑不是简单的支撑。轴承中的油膜有机动性,这会大大影响轴的临界转速。3.3.6 联轴器由于锻造转子长度的有限性和在不同温度和应力条件下,需要采用不同的转子材料,故在转子系统中采用了联轴器。大型汽轮发电机的多缸结构也需要采用一个由联轴器连接的轴系。联轴器实质上是传递扭矩的设备,但是它们也可能不得不允许相对的角不对中,传递轴向推力,并且确保轴向定位或允许相对的轴向位移。它们可分为挠性、半挠性和刚性联轴器三种。小型汽轮发电机上(如,最高达到120 MW)常采用挠性和半挠性联轴器,而对于大型机组,实际中通常采用刚性联轴器。3.4 汽轮机叶片3.4.1 冲动级动叶片-零部件及结构在冲动级中,这种冲动级由Rateau专家发明,大部分焓降发生在静叶中,级的驱动力来源于通过动叶的蒸汽动量的改变。冲动级设计的优点是紧凑,而且由于动叶中发生的压降小,对动叶的间隙相对不敏感。然而,动叶易于受到喷嘴尾迹扰动的影响,所以必须避免共振并维持低的蒸汽弯曲应力,而且由于动叶中动量改变相对高,故要求动叶强度高而且可能重。因此在实际中,经常把单独制造好的叶片利用叉形叶根安装到轮盘上,叉形叶根与在轮缘上机加工出的轴向凸肩相配合。动叶的外端留有一个或多个凸肩。这些凸肩穿过围带上的孔,同时围带依次装入叶片外机加工出的槽中。当把这些凸肩用铆钉铆好后,就能把围带固定住。围带可用于汽封并且可支撑叶片从而减小振动。每一部分围带将一小部分叶片连在一起并且可和下一部分连在一起或搭接,从而形成了强度非常高的结构。因为在所有冲动级叶片的顶部,反动度增加到一定程度,所以在动叶围带上有与之一体的轴向汽封片。静叶-零部件及结构静止喷嘴叶片有两种制造方法。焊接叶片由一整体钢板铣制而成,(和冲有叶型孔槽的内、外围带)共同焊成环形叶栅,(然后再将它焊在隔板体和隔板外缘之间)组成焊接隔板;而铸造叶片,由钢板制成,在浇铸隔板体时铸入叶片,用于温度低于230的场合。在一些最新的机组上,高压叶片采用电化学加工。高压缸的第一级往往采用冲动级,静叶片可装于喷嘴室中,从而避免了隔板的压力密封问题。由于第一级承担了比较大的焓降,这种喷嘴室结构降低了蒸汽对高压转子和内缸的压力和热冲击。由于冲动级隔板承担的压降大,所以隔板和叶片的强度都需要很高。尽管冲动级隔板在隔板汽封处的直径相对较小, 但其隔板汽封仍需要尽可能地好从而可以承担大的压差。在动静部分发生轴向位移时,要确保对径向汽封的影响不是很大。复速级汽轮机的第一个高压级,尽可能增大喷嘴叶栅的压降。它有时包含有两个冲动级。这两个冲动级置于同一个叶轮上,从而可保护汽缸和转子免于较高温度、压力蒸汽的冲击。由于这种级的焓降相当于四个冲动级,所以尽管会牺牲一些效率,但小型的便宜的汽轮机上会采用这种级。它不再用于带基本负荷的大型汽轮机上。这种级的喷嘴,采用缩放型,会产生很高的蒸汽动能,其中一部分用于动叶的第一列叶栅,剩下的经过静止导向叶片改变方向后,用于第二列叶栅。它的动叶和喷嘴叶片都由实心钢板机加工而成,要求强度非常高。3.4.2 反动级静叶片和动叶片零部件及结构尽管称之为“反动级”,实际上反动级的冲动度和反动度相同,导致了动叶片和静叶片的型线相同。这种类型的叶片由Charles Parsons先生设计提出,便于利用标准轧制型线进行经济生产。为了获得好的效率,这种级的速比相对较高,所以每一列叶栅上的焓降小,这也就是说,对于输出相同的轴功,这种级的级数较多。对于反动级,蒸汽以较低的速度进入动叶,并且基本上是以轴向方向进入的。因此作用在动叶上的驱动力基本全部来源于蒸汽通过动叶加速流动时产生的反动力。这样作用在动叶上的力相当平稳,加上静叶的喷嘴尾迹产生非常小的扰动,故反动级的动叶片上可有相当高的弯曲应力,而不存在由于振动而引起的疲劳故障风险。由于反动级静叶片两端的压差小,故反动式汽轮机不需要隔板,但是为了防止过度的漏汽损失,仍需要保持小的叶顶间隙。现代的反动式汽轮机在动静部分间,通常既有轴向汽封,也有径向汽封。这样在转子叶片的外端,有与叶片形成一体的围带,围带与汽缸上装有汽封齿片的汽封体配合形成汽封。静叶内径上的汽封齿片为静叶与转子间的间隙提供了汽封。3.4.3 低压级气体动力学与机械限制 在早期的机组上,末几级低压动叶片是定截面叶片。这种定截面叶片的应力从叶顶到根部呈二次方的增加,在叶片连接到叶根的部位应力达到最大。这样限制了可能运行于同步转速的叶片长度。现在先进的末级叶片截面随着半径的平方呈指数减小。于是由离心应力引起的张应力在叶片的大部分高度内基本不变,从而使得在3000 r/min机组上叶片的高度可达940 mm。现代的叶片,叶顶直径通常大约是叶根直径的两倍。因此,叶片中部相邻叶片圆周方向的距离,即叶片的节距是叶根处节距的1.5倍。这样,圆周方向的速度也是叶片底部圆周速度的1.5倍。叶片速度的增加将会改变蒸汽进入动叶的相对速度方向。因此动叶的入口角应设计成与蒸汽汽流的方向相一致,这样动叶的截面形状发生了变化。这使动叶出口角减小,以致动叶压降增加,并在动叶出口获得较大的速度来补偿圆周速度的增加从而使蒸汽离开叶片时产生最小的漩涡。级的根部设计反动度相当低,因为随着叶高的增加,动叶的压降增加,所以通过静叶的压降减少,从而使随着叶高的增加,级的反动度增加。由于离心力产生的径向拉应力和蒸汽汽流变化产生的空气动力学作用导致了高度扭曲叶片的采用,这种叶片在叶根处强度高,反动度低;而叶顶处则强度低,反动度高。叶顶连接件长叶片和大叶弦的采用导致了叶片节距的增加,这样使得提高叶片强度和减弱振动的装置变得复杂。为了承担离心负载,围带或拉金像跨接在叶片节距间的横梁,同时围带和拉筋还必须承担由于叶片的径向弹性伸长和运行中叶片有松动的趋势而引起的巨大周向张力。当拉筋被使用时,它们是“宽松”的类型与周向约束的,通常仅在一个各组叶片,并可以自由地在相邻的叶片沿圆周方向移动,离心力提供必要通过摩擦阻尼。相邻的拉筋之间的差距就复杂振动模式对长叶片和重叠的拉筋有时用来给一些测量周围的环的连续性。常规设计是不可行的,细长部分以及其中的圆周速度可以接近2马赫,但足够弹性的加强装置的连续环可被用来容纳周向应变。弹性拱带,显示在图3-6的括号,叶尖和抵抗叶片解开以及很大程度上允许的圆周应变。3.4.4 动叶叶根固定大型汽轮机末级叶片在运行时,会产生几百吨的离心应力,因此需要非常有效的叶根固定。目前叶根固定方式包括:菱形叶根,叉形叶根和直或斜的纵树形叶根。纵树形叶根是一种很好的叶根固定方式,因为在这种方式中,叶片可以依次紧密的排列而且在轴与叶根相连的齿上有最佳的离心力。3.4.5 汽轮机叶片发展将来,汽轮机叶片有望向满足下面三个目标发展:· 降低制造成本 · 整体性能改善 · 提高效率,包括排汽面积增大后的新低压叶片。 叶片设计的成本可利用计算机辅助设计与制造降至最低。在计算机辅助设计与制造中,考虑性能、振动和应力因素的最佳尺寸可直接输入到数控机床上。 为减少应力集中进行仔细详细设计可改善叶片整体性能。减少应力集中可通过控制振动特性避免在运行转速附近共振、减少叶片附件如围带拉筋和防腐蚀保护的使用(或改善性能)来实现。为了改善整体性能,需在强度高厚截面叶片与高效率及高效率一般具有高叶型比(长弦比)的叶片之间寻求平衡。 因为在高、中压缸中,大部分现代汽轮机叶片的内效率已达90%-95%,故再提高的程度不大。汽轮机制造者已经形成了高效的标准叶片系列,它们的效率受汽流入射角的变化的影响小,汽流入射角的变化是由于不同的应用情况和不同的运行参数引起的。叶根和叶顶间隙根据实际情况尽可能的小,并且根据设计许可有尽可能多的限流装置,这些限流装置的详细尺寸引起流量系数的一些减小,这样,通过这些间隙的漏汽就被减至最低程度。低压汽轮机模块的发展是一个代价高且漫长的过程,不过在其发展过程中,增加每个通流部分的排汽面积减少排汽动能(余速损失)一直是它的动机。对于特定的机组容量和蒸汽循环,这种发展会导致低压缸个数的减少;这一点对于节约成本和减少汽轮机房的大小是有意义的。就作用在叶片上的蒸汽弯曲应力和质量高叶片作用在叶片连接到叶轮的部位上的巨大离心应力而言,末级和次末级叶片一直是设计的瓶颈。3000r/min的机组末级叶片长度已经发展到高达1200 mm,这被认为是传统的含12%铬叶片材料的极限。实际上,前苏联机组上使用的1200 mm叶片由钛合金制造,这种钛合金可能是制造长叶片最优的材料。尤其是这种长叶片的发展使得在50Hz电网系统中,最大的核电站可采用3000 r/min的机组,尽管采用3600r/min的机组还很遥远。3.5 冷凝器3.5.1 前言对于一个大型火电站的最终热阱的气氛。有各种不同的选项,使用不同的过程达到最有效的散热片,并因此满足冷凝设备的要求和冷却水(CW)系统。典型大气的散热系统是: 方法(a)蒸发冷却,与封闭系统相关联的(冷却塔),用于 散热。 方法(b)加热的水排出,直接冷却系统(河流或相关 海水)进行散热。 当考虑了电站一个新的网站,它是在规划阶段重要以确保其有足够的冷却水源.随着越来越多的高台输出和单位的评价,位置的选择的必要性,缩小以符合可用的水资源,这伴随着同样重要的因素,如燃料类型和选择蒸汽条件,是评估任何部位是否合适时,考虑的主要特点。为了使蒸汽发电站运行一个高效的结算周期,冷凝植物,CW系统,以及相关的泵必须提取热量的最大数量从LP涡轮机的排汽。冷凝装置的主要功能是: 提供最低的经济排热温度的蒸汽循环。 要转换的排气蒸汽水回用在饲料周期。 从涡轮饲料供热厂排水收集有用的余热,和其他助剂。CW系统的目的是保持供应冷却介质提取所需要的热量,使冷凝装置可以满足其目标。它的使用有效的筛选设备,水泵,阀门的循环,以及(在必要时)冷却塔。筛选厂必须从这是大到足以阻止冷凝器或辅助冷却管的冷却水去除任何碎片。它必须易于保持清洁,甚至在过度时期的碎片。冷却水循环泵(CW)必须对系统的抗水,或泵头,在所有条件下遇到了在一个特定的站点,有效的保证灵活的CW泵运行,阀门通常设有使泵的任何组合,冷凝器和冷却塔操作起来。在被加热的水直接排放冷却系统,冷却水(河流或海水)被使用一次然后排出。在蒸发冷却的闭式冷却塔和混合冷却系统,冷却塔传热从工厂到大气中冷却后的水可以重复利用。.i这种情况下的水需求是化妆和清洗的目的。除了冷凝器满足的主要功能,它的设计也必须能够满足以下目的: ·提供涡轮与最经济的背压随季节变化CW温度或连续系统的散热片温度一致。·为了有效地防止冷凝水的化学污染或从CW泄漏或从蒸汽空间气体脱除和冷凝脱气不充分的。3.5.2表面冷凝器凝汽器是高效表面式冷凝器是由外壳,管板,冷却管,等(图.3-7)。对于一个典型的冷凝器,足够的空间是壳管巢之间设有使蒸汽免费获取全周巢的。蒸汽进入管巢在整个外围的速度降低到最小,这样,连同中央空气去除提供了最短路径,减少压力降到最低,保证了热传输的高平均率。空气排出管巢最寒冷的地区,实现了空气和水蒸气的最大冷却。这种类型的空气退出的一个特点是,最大的冷凝发生在哪里气体的浓度是最少的,导致通过凝结在空气的最小吸收氧含量被降低到可以忽略不计的值。简要总结,对凝汽器的设计的主要优点如下:· · 改进的热传输率更有效地利用冷却表面使一个给定的性能要达到一个较小的管区,或与冷却表面的给定区域中的更好的性能。·高冷凝温度围绕管巢全,蒸汽进入亲密接触降凝,作为一个结果,无冷凝冷却条件下发生。凝析油在略高于排气蒸汽从而减少热量的支出是由锅炉提供温度离开冷凝器。·改进了喷射器性能冷凝器的设计强加给喷射器打火机义务,使这些大小以被减小,以在操作所需的蒸汽或功率的降低。建筑在一个典型的冷凝器,一些功能如下:管是铝黄铜,1“外径,18s.w.g.和管板轧制金钟黄铜。管扩喇叭口到管板在入口端和出口端,在扩大。管巢设有分水箱的入口和反向端设置两个流程操作。一半冷凝器可以清理与另一半服务在降低汽轮机负荷。提供常用的配件3.5.3抽气设备空气中的植物提取的目标是·去除空气泄漏已进入凝汽器通过法兰和腺有效。·要删除其它不凝气体存在于从蒸汽排气低压涡轮机。这两个被移除形式冷凝器是很重要的,因为他们在任何数量的存在损害冷凝器的传热性能。相反,应避免过量空气的提取能力。空气中提取的植物必须能够运行在两个制度:一个在正常操作期间,其他当提高机组真空。当提高真空抽气设备,面临着大量的空气必须被移除,因此必须有能力来降低压力在凝汽器迅速的水平,使得涡轮启动。大型凝汽器抽气设备发展的主要通过抽气泵使用进化。蒸汽喷射泵是在共同使用,但是,在更高的压力和温度循环采用的今天,这已被证明是比空气泵不经济,无论是在资本和运营成本。液环式空气泵被普遍采用。这实质上是一种离心位移泵。一个多叶片叶轮旋转在一个偏置的外壳是半满的水。旋转的叶轮将液体向外,导致在一个坚实的环形液体旋转壳体中作为转子以相同的速度,但随着套管的形状。这种交替使液体进入和退出在叶轮叶片间的空间。入口和出口端口提供使泵的作用是用于从冷凝器的空气排空。这种类型的泵的优点是简单、可靠,具有较大的间隙转动部件,无阀或活塞。