欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    1.3.3函数的最大(小)值与导数.ppt.ppt

    • 资源ID:2337273       资源大小:1.62MB        全文页数:44页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.3.3函数的最大(小)值与导数.ppt.ppt

    旧知回顾,函数极值的定义,函数f(x)在点x0附近有定义,如果对x0附近的所有点都有f(x)f(x0)则f(x0)是函数f(x)的一个极小值.,求解函数极值的步骤,解方程.当 时:,(1)如果在 附近的左侧,右侧,那么 是极大值;,(2)如果在 附近的左侧,右侧,那么 是极小值;,新课导入,观察下图,点a与点b处的函数值,与他们附近点的函数值有什么关系?,a,b,观察下图中的曲线,a点的函数值f(a)比其他点的函数值都大b点的函数值f(b)比其他点的函数值都小,在某些问题中,往往关心的是函数在整个定义域区间上,哪个值最大或最小的问题,这就是我们通常所说的最值问题.,3.3 导数在研究函数中的应用,函数的最大(小)值与导数,3.3.3,教学目标,知识与能力,理解函数的最大值、最小值、的意义.掌握函数最值的判别方法.进一步体验导数的作用.,过程与方法,从函数的几何图形上观察、探究最大(小)值与极值、两个端点处的函数值之间的关系,总结出一般规律,并用来求一些简单(连续)函数的最大(小)值.,情感态度与价值观,在解决具体问题的过程中,将研究函数的导数方法与初等方法作比较,体会导数方法在研究函数性质中的一般性和有效性.,教学重难点,重点,利用导数求函数的最大(小)值.,难点,求函数的最大(小)值.,观察,观察右边一个定义在区间a,b上的函数y=f(x)的图象.,发现图中_是极小值,_是极大值,在区间上的函数的最大值是_,最小值是_.,f(x1)、f(x3),f(x2),f(b),f(x3),你知道吗?,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域的性质.但是,在解决实际问题或在研究函数性质时,往往更关心函数在某个区间上哪个值最大,哪个值最小?,观察,如下图,观察区间a,b上函数y=f(x)的图像,你能找出它的极大值极小值吗?,观察图像,可以发现 是函数y=f(x)的极小值,是极大值.,你能找出函数y=f(x)在区间a,b上的最大值最小值吗?,从图1.3-13可以看出,函数y=f(x)在区间a,b上的最大值是f(a),最小值是.,在上图中,观察a,b上的函数y=f(x)的图像,它们在a,b上是否有最大值最小值?如果有,分别是多少?,结论,一般地,如果在区间a,b上函数y=f(x)的图像是一条连续不断的曲线,那么它必有最大值和最小值.,如果在没有给出函数图象的情况下,怎样才能判断出最小值,最大值呢?,例1,例题讲解,求函数 在0,3上的最大值与最小值.,上述结论可从函数f(x)在0,3上的图像得到直观的验证.,例2,求函数f(x)=x2-4x+6在区间1,5内的极值与最值.,-,+,3,11,2,故函数f(x)在区间1,5内的极小值为3,最大值为11,最小值为.,例3,求函数y=x4-2x2+5在区间-2,2上的最大值与最小值.,动动手,解:,令,解得x=-1,0,1.,当x变化时,的变化情况如下表:,从上表可知,最大值是13,最小值是4.,(1)极值是仅对某一点的附近而言,是在局部范围内讨论问题,而最值是对整个定义域而言,是在整体范围内讨论问题.,极大(小)值与极大(小)值的区别是什么?,(2)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).,最值与极值的区别,知识要点,一般地,求函数y=f(x)在a,b上的最大值与最小值的步骤如下:,(1)求函数y=f(x)在a,b内的极值;,(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.,知识拓展,求函数的最值时,应注意:,闭区间a,b上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.,课堂小结,一般地,求函数y=f(x)在a,b上的最大值与最小值的步骤如下:,(1)求函数y=f(x)在a,b内的极值;,(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.,函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.,高考链接,(全国卷)已知a 0,函数f(x)=(-2ax),,当X为何值时,f(x)取得最小值?证明你的结论.,B,随堂练习,1.已知f(x)=2x3-6x2+m(m为常数),在-2,2上有最大值3,函数在-2,2上的最小值_.,-37,2.函数f(x)=x3+ax+b,满足f(0)=0,且在x=1时取得极小值,则实数a的值为_.,-3,3.函数f(x)=x-3x+1在闭区间-3,0上的最大值、最小值分别是()1,1 B.1,-17 C.3,-17 D.9,-19,C,4.函数f(x)的定义域为R,导函数f(x)的图象如图,则函数f(x)()无极大值点,有两个极小值点有三个极大值点,两个极小值点有两个极大值点,两个极小值点有四个极大值点,无极小值点,C,x,o,y,5.求函数 在区间-1,3上的最大值与最小值.,令,得,解:,相应的函数值为:,又f(x)在区间端点的函数值为:f(-1)=6,f(3)=0,比较得,f(x)在点 处取得最大值在点 处取得最小值,6.求函数f(x)=p2x2(1-x)p(p是正数)在0,1上的最大值.,解:,令,解得,在0,1上,有f(0)=0,f(1)=0,故所求最大值是,1.,习题答案,练习(第31页),习题答案,再见,

    注意事项

    本文(1.3.3函数的最大(小)值与导数.ppt.ppt)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开