智能车外文翻译.doc
附件1:外文资料翻译译文 自治智能车在模拟车辆列队中的设计万建,楚秀敏,吴勇,张瑞 运输安全工程研究中心,教育部,武汉理工大学,武汉,湖北,430063,中国。E-mail:whut_wj摘要自治智能车是基于考虑车辆和道路在内的车辆编队的物理仿真的基础。本文在车辆道路综合的情况下,分析了车辆编队系统的架构,并提出了自制智能车控制系统的构造和结构。在分析了自治智能车的功能要求之后,本文设计了自治智能车关键的硬件和软件。它把芯片作为控制器,以及用摄像头和超声波传感器作为行车导航。同时,它应用直流电机实现智能车的驱动和转向,以及采用Zigbee技术来设计无线通信模块。我们提出的关于识别导航线和运动控制的关键算法,这其中包括路径提取和控制算法。试验表明自治智能车有一个良好的稳定性能,满足了车辆编队系统的功能要求,这款车将提供测试平台和车辆编队系统的进一步研究的技术基础。1.简介近年来,随着横向和纵向的智能车辆控制技术等智能交通技术的发展,车辆列队研究已成为在智能交通领域的热点,它融合了一些技术,这其中包括车辆间相互通信,公路通信技术,智能控制技术等。在车辆道路综合的基础上的车辆队列控制系统可以通过提高单个车辆的智能化水平,提高与交通环境交互信息的能力,以及增加车辆密度来提高道路通行能力。与此同时,它减少了控制对象,简化了交通控制复杂性,增加了运输可控性,有效地缓解了交通堵塞,并最终提高了行车安全性。此外,它可以在一定程度上减少车辆阻力和车辆油耗。图1显示了基于车辆道路行驶的车辆队列架构系统,这表明智能车辆控制,车路信息交互技术,车辆队列和控制方式和其他关键技术是系统的重要组成部分。然而,目前汽车队列的结构,行为特征和智能化行程控制算法尚未完善。因此,有必要研究一些基础东西,这包括车辆队列,车辆队列模型,及车辆小队控制方法的行为特征,这些研究需要在建设有硬件循环仿真的车辆队列系统中进行。交通运输类监控层道路汽车调度层车辆队列控制层信息进程执行传感器汽车1汽车2汽车n道路和环境图1基于车辆道路的车辆队列系统的体系结构为实现对队列行驶车辆的模拟,智能控制和交换信息是必要的。该系统需要智能控制,信息交互、自治的稳定性。图2是的自治智能车系统的结构。自治智能车采用单片机作为控制器,并使用摄像头、导航传感器和超声波传感器,基于Zigbee技术的无线通信模块。 本文将首先分析基于自治智能车功能要求的整体设计方案,然后介绍了横向和纵向的控制和导航的硬件实现方式和如何处理的关键问题,并讨论如何通过优化控制算法和软件来提高汽车的稳定性和智能化水平,随后根据实际过程的测量自治智能汽车的性能介绍它的自治的策略。单片机距离测量传感器速度测量传感器纵向信息无线传输和接受模块摄像头横向信息角度传感器行驶电机转向电机横向控制纵向控制道路 图2自治智能小车控制系统2. 自治智能模拟车整体设计自治智能车包括四个部分:检测系统,电力系统,通信系统,控制和决策系统。检测系统是最重要的,其主要工作是导航。我们选择CMOS摄像机作为检测传感器,它可以检测出车道,引导车辆在路上顺利的行驶。考虑到单一的CMOS图像传感器不能理想的检测车的距离,超车距离和其他运动参数,我们选择了超声波传感器。电力系统主要控制电机的转向角度和直流电机的速度。该控制过程如下:首先,检测系统收集路径信息,然后驱动器系统使直流电动机产生适当的转速,转向电机根据控制和决策系统的分析和判断给出一个正确的转向角,所以自治智能汽车可以跑得快而且平稳。为了通过车队仿真控制得到更实际的行为特征,自治智能车在该系统中采用后轮驱动和前轮转向的结构。在车辆与车辆之间和车辆与道路之间的无线通信网络中,我们选择了基于IEEE802.15.4无线标准的ZigBee技术。多节点的网络需要大的网络容量和自组织无线通信技术,相较于其他无线通讯技术,Zigbee有更高的数据传输速率和执行时的更稳定。它的网络能够支持上千个节点,是在小范围内监测和控制的最好选择。控制和决策系统以飞思卡尔16位单片机- MC9S12XDP512作为其主要控制芯片,它的40M的主频能够满足实时检测和信息处理的需要。此外,它可以提供丰富的I/ O端口,精确的时钟输入捕捉和时钟资源。XDP512连接所有的子模块,收集周围的车辆信息,并处理数据,根据控制算法输出控制信号。HCSX12控制核心Zigbee 模块PC检测和控制车辆之间通信车辆道路通信CMOS传感器超声波传感器前轮横向控制器后轮纵向控制图3系统框架3.自治智能车硬件系统设计硬件设计对自治智能车的运行效果有直接的影响,根据自治智能车总体的分析,硬件应该含有以下模块:(1)导航模块,这其中包括数字CMOS摄像头和超声波无障碍检测传感器(2)控制模块,包括行驶和转向运动电机(3)Zigbee无线通信模块(4)单片机控制模块。3.1、导航装置(1)摄像头模块设计使用摄像头作为路径检测传感器提前扫描前面的道路,以便汽车更顺畅的操作。由于CMOS图像传感器具有高集成度,低功耗,低像素的缺陷和其他优势,我们选择了356* 292分辨率OmniVision的OV6620彩色CMOS图像传感器。图4是图像采集过程。首先,单片机控制摄像头采集信息,然后传输图像数据到FIFO缓冲存储器,变换并行及串行数据,最后由单片机的SPI端口读取这个数据。图4 图像采集过程图像采集过程有两种模式:上电模式和SCCB模式。该系统采用SCCB模式:经过SCCB初始化OV6620和启用VSYNC,系统判断是否已获得一帧图像,FIFO存储了一帧图像之后,系统通过单片机获取数据。(2)超声波模块设计如果让智能汽车能自动避开障碍和导航,则它需要建立在行驶中车辆的距离测量系统。超声波测距系统,可避开障碍并定位他们,根据摄像头获得的信息进行决策控制,并协助路径的规划。但是少量的超声波传感器不能满足高精度测距和避障的要求。为了确保高精确度,汽车需要增加测量距离的电路通道,用来补偿传感器角度的限制。该系统采用8个超声波测量通道,利用角度补偿手段使主要障碍的位置和距离的信息更加准确。图5是安装结构图,图6是距离测量系统的数据流结构图。 智能车图5超声波传感器安装结构该系统通过检测从发射到返回的时间间隔来计算距离。因为时间与超声波的路程成正比,当超声波发射端发送几个振荡的脉冲,微控制器开始计时;当接收器接收到第一个反馈脉冲,时间停止。测量距离如下:D=CT/2。(1)在公式(1),C是空气中的声速,T为从发射到返回的时间间隔。图6如下:MC9S12XDP512超声波发射方波发生器比较电路红外接收功率驱动放大电路3.2 控制单元(1)直流电机驱动,速度检测 RS -380S型直流电动机是用于速度控制,自治智能车采用闭环控制技术,并以MC33886 H桥驱动器作为电机驱动器。如果电机采用开环控制,它会受到许多干扰,如电池电压,电气传动摩擦,路面摩擦力和由前轮转向角引起正向电阻,这些因素将导致智能车的运行不稳定。因此,闭环控制方法是迫切需要的。闭环控制系统测量速度,并采用PID算法,它需要在很短的间隔内获得速度变化,计算出瞬时速度和期望速度之间的差值,速度传感器采用欧姆龙E6A2- CWZ3C编码,其精度可达360 P/ R。(2)转向电机控制 转向电机控制由直接改变输入PWM占空比的不同来转动不同的角度,该转向电机输出角与给定的PWM信号有一定的线性关系。由于电机的转向力矩足够大,单片机计算横向控制量,并直接给出了PWM控制信号,使电机实现转向。3.3无线通信模块自治智能车的通信系统包括以ZigBee为基础的通信卫星网络,它由一个网络协调器和一些网络终端节点组成。网络协调员负责网络的管理工作,而终端节点一方面获得模拟数据;在另一方面,把这些模拟数据通过无线网络传输给协调员。通过这种方式,不仅降低了ZigBee网络的复杂性,而且也方便了数据的集中管理。图7描述了通信网络的设计方案效果:在PAN无线网络覆盖里,网络终端节点的数目已经确定。在这个系统中,每台车是一个智能终端节点。装载着MC13192无线收发器的汽车通过MC13192与 XDP512之间的数据交换来进行无线通信。图7 自治智能车通信系统结构3.4单片机及其外围电路模块XDP51是自治智能车的核心部件,它控制着所有其他模块,获得路径、速度、无线信号和其他数据,并在此基础上将参数归类并计算出最优的控制策略。因此,该系统必须拥有非常高的稳定性。为了提高单片机的稳定性,设计的主要措施已经采取如下:MCU电源电路设计;滤波电路的优化;单片机系统PCB板的布局;单片机时钟电路。4自治智能车和相关算法的软件系统设计 该智能车系统软件包括以下模块:初始化模块,实时路径检测模块,防冲突模块,横向和纵向闭环控制模块,通信模块。该系统的软件流程图如图8所示。在大多数时候,微控制器处理数据和图像。因此,高效的图像处理算法和闭环控制算法可以节省单片机的CPU资源,提高自治智能车的反应速度和它的整体性能。路径提取算法和运动图像采集后的反馈控制算法如下。4.1路径提取算法路径是目标检测线边缘的准则。算法是:一个灰度图像中的每个设定的阈值的二维矩阵,得到两个相邻像素的自顶向下的差值。如果边缘大于或等于阈值,它的下一个点对应的像素是指向边缘的,该像素被认为是特征点,在同一时间记录它。当发现边缘的排列,我们可以找出靠近这一行的下一行近的边缘,因此花更少的时间找到了这一点。该算法能始终在每一列的边缘附近跟踪这一列,并找出下一行的边缘,所以它是高效的。在横向控制,我们根据坐标来使电机转向,该查表方法可以控制横向方向。开始初始化检测路径检测障碍控制需要反馈需要停止外部指令新策略数据融合Y停止YNY图8 自治智能车系统的软件流程图4.2运动反馈控制算法 在纵向控制中,我们建立一个二维数组,有10*33种元素,每一行对应一个速度值,在一定的速度下,每个排列对应着不同的角。 在纵向控制的过程中,我们根据当前的速度和道路状况设置安全速度值,所谓的安全速度值是车能拐过拐角的速度。当反馈速度小于设定速度,汽车加快速度,如果反馈速度等于设定速度,汽车保持原来的状态,否则减慢或加快。加速和减速算法公式(2): u(k)=Kpe(k)-e(k-1)+Kie(k)+Kde(k)-2e(k-1)+e(k-2) (2) u(k)是速度变量的增值、e(t)是控制误差、Kp相当增益,Ki= KpT /Ti是积分系数,Kd = KpTd/T是微分系数,Ti是积分时间常数,Td是导数时间常数,T是采样时间。5自治智能车测试和分析如图9所示的是智能车的外观,我们从四个方面测试它的性能表现。图9智能车的外观5.1智能车的巡线 经调整后,智能车的巡线功能实现了。它会自动加速和减速。用计算机模拟的轨迹图,如图10,我们可以看到,车开动的路线,有一定的横向误差。分析发现,横向控制数据不够精细,那么方向的控制是不能满足控制精度。图10 自治智能车运动轨迹5.2 汽车蔽障测试 当自治智能车需要改变车道或超车,在避开障碍的实验过程它可以自动避开障碍物.分析表明有关蔽障策略不能良好的处理速度、距离和转角的关系。精确模型应建立在其中。5.3单个智能车速度控制的测试 在公示(2)里面改变Kp,Ki,Kd的值,测量电机控制和智能汽车在高速运行的关系,这种关系见图11。横坐标是测量周期和Y坐标是测量速度的脉冲,曲线1表示对象速度,曲线2,曲线3是当Kp,Ki,Kd变化时的速度曲线。在实验中,我们发现系统受Kp影响非常大,图11显示,在调整过程的速度的过程中,由于不同的PID参数值,会出现不同幅度的振动。特别是在响应速度下降时,会产生更大的稳态误差。图11电气特性和是将时间的关系5.4反干扰和通讯测试在正常情况下,自治智能车在轨道线上运行时,在不脱轨的前提下速度比安全速度小。在增加人为光线或覆盖一些道路标记,自治智能汽车能在遇到盲点时自动停止,所以系统需要通过增加反干扰能力提高性能。同一时间,在自治的智能车上进行的测试表明:通信系统可以正确地接受指令,做出正确的动作。6结论与展望 基于车辆道路综合情况的车辆队列控制是智能交通领域的热点,半实物仿真技术是车辆队列控制的重要研究工具。汽车的通信能力是车辆队列的物理模拟仿真系统的基础。在本文中,16位芯片MC9S12X- DP1512是用于控制的核心;除此之外,CMOS摄像头ov6620传感器与超声波传感器,用于收集交通信息;直流电动机及其它元件组成自治智能车的控制系统;Zigbee技术是用于通信,这种通信符合单辆车在车队中的智能化,信息化,自治性,稳定性的要求。试验表明,自治智能车可以自动识别路径,在高速运行时保持稳定性。在通信中,Zigbee数据传输模块传输数据稳定、正确,这样自治智能车可以根据通信协议控制另一个智能车。超声波传感器有4毫米的位置精度可有效检测周围的障碍。汽车的结构提供了用于智能车辆道路系统和实施自治车辆队列控制的下一步发展测试平台和技术基础。 今后,将进一步研究自主智能车,车辆队列控制器算法和控制策略,这项研究包括自治智能车自动跟踪算法和自动避障算法,多辆车之间的通信,车辆动力学模型和运动模型的控制策略的结合。鸣谢它是由国家自然科学基金项目中国科学基金(No.50578128)和中国高新高技术研究发展计划(863)(编号2006AA11Z215)。字典1. 名词 1. 介绍2. 采用3. 导言4. 引言5. 导论6. 绪论7. 引导8. 绪言9. 初步10. 例言11. 聿12. 诸言附件2:外文原文The Design of Autonomous Smart Car Used in Simulation of Vehicle Platoon Wan Jian, Chu Xiumin, Wu Yong, Zhang Rui Engineering Research Center of Transportation Safety, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei, 430063, China. E-mail:whut_wjAbstract The autonomous smart car is the foundation of physical simulation of vehicle platoon based on vehicle and road cooperation. This paper analyzed the architecture of vehicle platoon system in the case of vehicle-road cooperation, and proposed the constitution and structure of autonomous smart car control system. After analyzing functional requirement of the autonomous smart car, the paper designed the key hardware and software of the autonomous smart car. It took the microchip as the controller, and used camera and ultrasonic sensor for the lane navigation. At the same time, it used DC motor for control driving and steering, and the Zigbee technology was adopted to design the wireless communication module. The key algorithm about recognizing navigation lane and movement controlling method was proposed, including path extraction and controlling algorithms. The test indicated the autonomous smart car had a good and stable performance, which met functional requirement of vehicle platoon system. The car will provide test platform and technological base for further study of vehicle platoon system.1. Introduction Reduce the vehicle resistance and the vehicle oil consumption in some degree. Figure 1 shows the architecture of vehicle platoon system based on vehicle-road cooperation, which show that the intelligent vehicle control, the vehicle-road information interactive technology, the control way of vehicle platoon and other key technologies are the important parts3However, at present the vehicle platoon's architecture, the behavioral traits and intelligent travel control algorithm have not been consummated. Therefore, it is necessary to research the foundation, including the behavioral traits of vehicle platoon, modeling of vehicle platoon, and the control method of vehicle platoon. These research need to be conducted by constructing the simulation system of vehicle platoon with hardware in the loop.For the realization of the vehicle platoon on simulated, intelligent control and information exchanged is needed. The system needs intelligent control, interactive information, self-government stability. Figure 2 is the system structure of the autonomous smart car. The autonomous smart car takes MCU as the controller, and uses camera and ultrasonic sensor as navigation sensors, Zigbee as the wireless communication module.This paper will analyze the overall design of the autonomous smart car based on the functional require-ments first, then introduce the lateral and longitudinal control and the implementation of the hardware of navigation and the way how to dealt with the key issues, and also discuss how to improve the car's stability and intelligence level through optimizing the control algori-thms and software, subsequently present its autonomy strategy based on the actual process of testing the autonomous smart car's performance. Finally, it will analyze the test data and make further improvement about the autonomous smart car control algorithms.2.Overall design of autonomous smart simulant carThe autonomous smart car includes four parts: the detection system, the power system, communication system, control and decision-making system. The detection system is the most important, whose main work is the navigation. We choose CMOS camera as the detection sensor which can detect lane and guide vehicles to travel smoothly on the line. In view of a single CMOS image sensor can t detect the vehicle distance, overtaking distance and other movement parameters ideal, we choose the ultrasonic sensor at the same time4. The power system mainly controls the angle of the steering motor and the speed of the DC motor. The process of control are as follows: first, the detection system gathers the path information, then the drive system make the direct current motor give a proper rotational speed and the steering motor give a right steering angle by the control and decision-making systems analysis and judgments , so the autonomous smart car can running fast and smoothly5. In order to get more realistic behavior traits through the simulation control of vehicle team, the autonomous smart car in this system uses the structure of rear wheel drive and front wheel steering. In the vehicle-vehicle and vehicle-road wireless communication network, we select zigbee technology based on the IEEE 802.15.4 wireless standard6. Multinode network needs large network capacity and self- organization of wireless communication. Compared to other wireless communication technologies, Zigbee have a higher data transfer rate and perform more stably. Its network can support thousands of nodes and is the best choice to monitor and control in small-scale. Control and decision-making system takes the freescales 16-bit MCU MC9S12XDP512 as its main control chip7. Its 40M main frequency can meet the need of real-time detection and processing of information. Also, it can provide rich I/O ports, the precise clock input capture and clock resources. XDP512 connects all sub-modules, collect the information around the vehicle, and processes the data, output control signal in accordance with the control algorithm. Figure 3 is the system framework. 3. Autonomous smart car hardware system designHardware design has a direct impact on the operating effect of the autonomous smart car .According to the above analysis of the autonomous smart car, hardware should have following modules: (1) navigation units including digital CMOS camera and ultrasonic barrier detected sensor;(2) control units including driving and steering motor; (3) Zigbee wireless communication module; (4) MCU control module.3.1. Navigation Unit(1) Camera module design Using camera as a path detection sensor scans the front path in advance, so that the car can operate more moothly. As CMOS image sensor has high integration, low power consumption, low pixel defects and other advantages, we select OmniVisions multicolor CMOS image sensor OV6620 with a resolution of 356 * 292 pixels. Figure 4 is the process of image acquisition. First, MCU controls COMS camera gathering information, then transfer the image data to the buffer memory FIFO, transform the parallel and serial data, finally read the data by the MCUs SPI port.Image acquisition process has two modes: power up mode and SCCB mode. The system uses SCCB mode: After SCCB initializing OV6620 and enabling VSYNC, the system judge whether it has obtained a frame image. After FIFO stored a frame image, the system gets the data by MCU.(2) the Design of Ultrasonic ModuleIf the intelligent car automatically avoids barrier and navigates, it needs to establish the distance measurement system of the moving vehicle8. The ultrasonic distance measurement system can avoid obstacles and locate them, make decision level fusion of information with the camera, and assist path planning. But a small quantity of ultrasonic sensors can't meet the high precision requirements of distance measurement and obstacle avoidance. In order to ensure the high precision, the car need to add channels of the distance measurement circuit, which compensate the angle limitation of sensor. The system uses 8 ultrasonic measurement channels, using angle compensation means to make location and distance information of ambient main obstacles more accurately. Figure 5 is installing structure, Figure 6 is the data flow structure diagram of the distance measurement system.The system calculates distance by detecting time interval from emission to return. Because the time is proportional to ultrasonic distance, when the ultrasonic transmitting terminal sends several oscillating impulses, MCU begin timing; when the receiver receives first feedback pulse, timing stop. Measured distance as follow: D=CT/2 (1)On formula (1), C is sound speed in air, T is the time interval from emission to return.3.2. Control Unit (1) DC Motor Drive and Speed Detection RS-380S-type DC motor is used for speed control. The autonomous smart car takes the closed-loop control technique, and use MC33886 H-bridge driver IC as a motor driver. If the motor uses open-loop control, it will be subject to many disturbing, such as battery voltage, the electrical transmission friction, road friction and forward resistance caused by the front wheel steering angleThese factors will cause operation instability of the smart cars. So closed-loop control method is in urgent need. The closed-loop control