地质 毕业设计 毕业论文外文翻译 中英文对照.doc
调查的非液化层的厚度表面液化引起的原因G.Papathanassiou地质系,萨洛尼卡亚里士多德大学,希腊摘要:这项研究的目的是探讨关于液化现象的表面表现非液化盖层的影响。为了实现这个来自土耳其,台湾和希腊在震后获得的实地调查,收集资料和钻孔液化价值潜力指数在每个站点(LPI)的结果。大部分的钻孔在液化现象用几个非液化钻孔点观察。随后,开发了一个依据估计覆盖层的厚度和劳工生产力指数的图表,这里液化和非液化的例子被策划着。这项研究的结果,可能出现的,液化现象可能与不可能的被描述成这个相对于劳工生产力指数的覆盖层厚度图。本研究成果可用于液化引起的地面干扰和为缓解这一地质灾害的预测。1.简介该土壤层的液化潜能评估是必要的,如果损坏建筑物和其他基础设施被避免。一些科学家已经研究并提出了对土层液化潜能评估方法,虽然很少有研究报告或报告液化引起的地面变形。尽管Youd&Garris(1955年)得出结论认为,能够准确地预测其表面破坏的潜力是一个地质学家担负着与建设工程选址安全的主要工作。Ishihara (1985年)用经验提出的标准评估地面,通过关联的上覆非液化层,H1型,(覆盖层)和液化层厚度,氢气,它的下方厚度。图表的开发被相关的地面峰值加速度和建议之间发生的边界曲线和非液化的表面效应发生不同厚度这两个参数值(Sonmez等,2008年)。由Ishihara(1985年)收集的资料来自无论1983年N ihonkai,日本中部地震(M= 7.7)和1976年的中国唐山大地震(M= 7.8)的有无两次地震引发的液化。在日本桥代码公布的标准是适用于估计土层的厚度和液化潜能。20世纪90年代,YoudGarris(1995年)使用308个钻孔数据记录,从那里可以预期或注意到液化后15个震级5.3级至8.0级(M)的范围地震领域。他们使用Seed等人(1985年)创造的程序,简化的程序来计算土层的厚度。研究中的一个重要参数是,材料极易液化。YoudGarris(1995年)把表层效应分成三组:砂翻滚和无侧位移的小地裂缝;砂翻滚加上地面振动的影响和通过横向传播引起的表面效应。此外,他们开发的领域,并没有体现在地面液化第四组。图1 图表关联液化与非液化盖层厚度严重指数,以便确定在地面的存在或缺乏明确的液化区(Sonmez等,2008年)。他们的结论是,发生或不发生液化是在没有通过横向传播或地面的振动影响的地点,由Ishihara(1985年)所提出的图大概正确的预测,对该点液化引起地面的振动和横向扩散效应进行了观察,简单的预测(YoudGarris,1995年)。此外,Yuan等人(2003年)和Chu等人(2004年)所提出的图表应用了Ishihara(1985年)与1999年集集大地震相关的案例。前者研究的结论是这些图只有少数例外匹配这个数据,后者液化位点的方法与Ishihara(1985年)不一致。Sonmez等人(2008年)设计的评估液化在地面的体现的新图表通过关联与非液化层厚度的上限液化严重程度指数(LSI)的效果。他们的收集的数据由土耳其和台湾发生在1999年的地震引发液化和非液化地点完成的现场测试。被提到的图表(图1)分为三个区,定义为:其中液化引起的地面破坏,可观察(A区),液化引起的地面破坏可能是没有观察到(C区)和过渡区A和C之间的区域(B区)。然而,正如Sonmez等人(2008年)指出,Ishihara的过程只考虑到了覆盖层和底层液化层,而不考虑一个交替存在大量液化和非液化层和他们的联合影响。Sonmez等人(2008年)用液化严重程度指数代替液化层的厚度。这项研究避免了开发一个可用于此限制使用的图表,该图表可用于预测液化表面形式,该表现形式以非液化盖层、H与液化潜能指数(LPI)相关的厚度为基础。选择该指数的劳工生产力指数,是因为它被许多研究者(Iwasaki等人1978年;Sonmez等人,2003年;Papathanassiou,2008年;霍尔泽,2008年)认为可以描述整个土柱的性能。那些在这项研究中所使用的数据被用于按地区提供了与标准贯入试验进行测试,在Kocaeli,1999年的土耳其,集集,1999年的台湾和雷夫卡达,2003年的希腊的事件后。2.编制数据集和估计的劳工生产力指数2.1数据集在这项研究中,Papathanassiou(2008年)编制的数据集被使用。这包括在台湾,土耳其和希腊震后的79标准贯入试验钻孔液化和非液化点收集的钻孔。资料来自1999年集集和台湾的地震,http/peer.brekeley.edu/lifelindes/research和http:/www.ces.clemson.edu/chichi/TW-LIQ/In现场- Test.html。信息来自1999年科来自1999年科贾埃利地震,下载自http:/peer.berkeley.edu/publications/turkey。数据来自2003年的雷夫卡达,希腊地震,获得了由科德9六方会谈(2004年)收集钻孔。台湾标准贯入试验数据来自进行了观察和地点没有液化的证据的横向扩展,建筑物沉降或砂翻滚。来自土耳其的标准贯入试验数据从Adapazari小镇,在那里观察了如沙翻滚和建筑物沉降现象,并在那里观察了液化引起的横向扩散现象(布雷等人,2001年)。来自2003年希腊的雷夫卡达地震的六方会谈的钻孔主要在岛内市。2.2评估对液化安全系数得到土柱的LPI在这项研究中,每一层的fs液化安全系数,最初是作为档案室(循环阻力比)的比例,在企业社会责任(循环应力比)的基础上,确定的程序计算,通常被称为“简化程序”(Seed & Idriss,1971年;Seed的等人,1985年 和Youd等人,2001年)。在集集(台湾),科贾埃利(土耳其)和雷夫卡达(希腊)地震的震级兆瓦分别为7.6,7.4和6.2。平均峰值在炎陵县,南投,雾峰,大春和Zangbin台湾城镇水平加速度分别为0.18g,为0.38 g,0.67g(楚等人,2004年)和0.19g,0.12g(庄,2002年)。科贾埃利地震为1999年城镇标准贯入试验钻孔制定的数据是从在Adapazari和亚洛瓦,那里的PGA的记录值等于0.4g。最大地表加速度的雷夫卡达城(希腊)记录得0.42g(ITSAK,2003年),而在美国PGA Vassiliki和Nydri村庄估计分别为0.25g和0.4g,(Christaras等人,2005年)。用液化潜能指数(LPI)来计算每个钻孔。这种方法是由Iwasaki等人(1982年),以更好地估计可能液化损害。使用的劳工生产力指数的计算公式如下: LPI=F(z)W(z)dz (1)其中z是地面以下的深度,其计算为W(z)= 10 - 0.5z;F(z)是对液化的安全系数fs,其中当fs < 1时, F(z) = 1 fs;如果fs>1,那么F(z) = 0。Eq(1)表现为一个从0到100的值的LPI。劳工生产力指数是和安全系数(fs)联系在一起的。只有土壤的fs<1并且在同一时间满足液化敏感性标准才作用于液化严重性(Juang 和 Li,,2007年)。在这项研究中,当LL <37和PI<12时,土层被定性为易液化,它是由Seed等人提出的(2003年)。劳工生产力指数指数综合了液化层厚度,对非液化(盖)层厚度和消除对液化值的安全系数。Iwasaki等人(1982年)校准的液化引起的损害程度与劳工生产力指数值使用了87钻孔在日本提供的液化和非液化标准贯入试验值的数据点。根据Iwasaki等人(1982年)液化破坏潜能在>15(非常高)到0(极低)的范围内,即高5到15之间,低0和5之间。劳工生产力指数的方法被Sonmez(2003年)修改,加入了1.2而不是1的安全系数值,并引入了两个新的类别较低值:0不液化,0-2液化低和2- 5温和液化。对劳工生产力指数的优点是,它通过提供量化为整个土柱的安全因素,而不是而不是为每个层的安全因素。因此,劳工生产力指数值分别用于液化危害图的编制,可以用来作为一种工具来为规划者的液化潜能的初步评估。3. 评价液化现象的发生为了评估非液化盖层的厚度,H,适用的标准被Papathanassiou(2008年)考虑在内。尤其是作为土壤非液化层的特点要满足一个或多个下列条件:非饱和土,液化安全系数大于1(fs>1),和塑性指数PI> 12或液限> 37。这些非敏感性的标准,由Seed等人(2003年)提出的。因此,考虑到LPI和H的估计值,开发了一个图表,如图2所示。与观察到的液化点的区别来自非液化,从而相对区的划定。此外,一个介于这两个区的存在,可以被视为“灰色地带”,其中50的数据绘制相应的液化点和50非液化点。为液化在地面表现值被定义为劳工生产力指数= 10。低于这个界限,在地面的观测没有液化的证据。如不液化盖层厚度超过6米的特点是不液化,对劳工生产力指数值无关。该参数定义的液化区,如图2所示,劳工生产力>10和H <4米。因此,拥有这些特征的点应该被视为发生液化表现的能力。“灰色地带”是指哪里的LPI>10和盖层厚度在4-6米范围内。这些点被绘制在这方面应作为液化表面表现的可能地点分类。比较图2与Sonmez等人(2008年)提出的图表(图1),从它可以看出,他们在关于液化的发生与该覆盖层厚度的关系是大致一致的。特别是,Sonmez等人(2008年),如图1所示,结论是液化在盖层值H大于6米的地方不能预测,同时对H <3米液化引起的地面破坏可以预测。在我们的研究表明,这些值是分别在6米和4不发生和发生液化。图2 劳工生产力指数的79个记录包含在数据集(实心圆:液化点;空心圆:非液化点)及相关区划定。4. 应用该方法的拉里萨,希腊城市本研究提出的方法是应用在拉里萨,希腊中部的城市。这座城市位于色萨利,希腊中部,是金融和商业活动的重要中心。拉里萨市位于地震多发、中等地震活动的地区,所在的0.24g基岩点有10的概率(铂)超过50年,已经被确定使用希腊抗震规范。历史报告中描述的发生在1941年地震后,砂翻滚和沿Pinios江横向蔓延在城市的北部,发生在1941年三月一号的地震(Maravelakis,1943年)。该区的程度,可能会被表面表现的液化影响,通过估算液化潜能指数LPI及对在六方会谈的53个地点收集的非液化覆盖层厚度。此数据多数是由私人公司Georesearch收集,拉里萨,其余由TsotsosPitilakis(1995年)进行的一项研究中收集。最初,土层液化敏感性的评估是根据由Seed等人(2003年)提出的建议和之后的,对安全系数和低截获概率进行了计算,每孔使用2.2节所述的步骤。然而,多数拉里萨的城市是建立在河流相沉积,还决定在最终调查加速度值在近地表地质的影响。为了放大效应,由于地表地质,由Stewart等人(2003年)提出的回归法,导致一澳玛值等于0.25g。在非液化层厚度上限确定使用Papathanassiou(2008年)和上述标准。从这些地点的结果,绘制了使用参数劳工生产力指数和H,如图3所示。只有两幅绘制符合“液化表现”地带。特别是,LPI及这些钻孔的H(点),49和9的计算值是前者17个和3,后者21和3米。因此,液化引起的地面破坏,预测由地震中的M = 7和PGA = 0.25g这两个地点附近触发。在图4中的拉里萨图所示,包括标准贯入试验钻孔的点在内。图3 图显示了通过在拉里萨(实心三角形)城市的现场测试提供的数据分布。 图4 地图显示中的城市拉里萨和地区分布的钻孔为本研究中提出的程序的液化分类。这一结果不与地表地质为基础的评估在拉里萨地区河流的地方液化敏感性,容易液化,沉积物映射一致。但是,低(深)地下水位和致密层的底土(标准贯入试验- N> 25)认为导致这种非液化的行为和解释由本研究所提出的方法的应用成果的主要参数。参考书目Bray, J.D., Sancio, R.B., Youd, L.F., Durgunoglu, T., Onalp, A., Cetin, O.K., Seed, R.B., Stewart, J.P.,Christensen, C., Baturay, M.B., Karadayilar, T. & Emrem, C. 2001. 记录事件所引起的地表塌陷的原因,1999年8月17日土耳其地震:报道在地表环境数据的特征(2001)p。588。Christaras, B., Pavlides, S.P. & Papathanassiou, G. 2005. 研究包括地表断裂。 从2003年案例研究(希腊)地震地质、线性国际学术研讨会,法国里昂基础设施(2005)(CD)。Chu, D.B., Stewart, J.P., Lee, S., Tsai, J.S., Lin, P.S., Chu, B.L., Seed, R.B., Hsu, S.C., Yu, M.S. &Wang, M.C.H. 2004. 研究台湾九二一地震液化和无液化条件下的土壤(。土动力学和地震工程24:647-657。Holzer, T.L. (2008). 液化概率风险图。岩土地震工程土动力学四,普惠制181,ASCE的。Ishihara, K. 1985. 天然地震中土的稳定性、触发性。第11届全球会议土力学及基础工程,旧金山,加州,鹿特丹1:321-376。ITSAK, 2003. 2003年8月14日,雷夫卡达地震和他对建筑和大自然的影响,见报告(2003年),地震61(希腊)。Iwasaki, T., Tatsuoka, F., Tokida, K. & Yasuda, S. 1978. 一个评估潜在的土壤液化在日本各网站案例分析实用方法。第二届国际会议小区划:885-896。Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S., Yasuda, S. & Sato, H. 1982. 土壤液化潜能小区划使用简化方法。诉讼的第13届小区划,西雅图,美国第一卷国际会议。三,1319年至1330年。Juang, C.H., Yuan, H., Lee, Der-Her. & Ku, C.S. 2002.液化评估与从台湾地震重点评价彩管的案件为基础的方法。土动力学和地震工程22:241-258。Maravelakis (1943). 地质和拉里萨破坏性地震强震研究,1941年3月1日,第27Papathanassiou, G. 2008.生产力指数的方法用于校准液化引起的故障的严重程度和评估液化表面证据,工程地质。 96:94-104。Seed, H.B. & Idriss, I.M. 1971. 简化程序,评价土壤液化过程。作者:土力学基础部,ASCE的97(SM9):1249- 1273Seed, H.B., Tokimatsu, K., Harder, L.F. & Chung, R.M. 1985. 在土壤液化标准贯入试验性评价程序的影响。地质工程部的杂志111(12):1425- 1445。Stewart, J.P., Liu, A.H. & Choi, Y. 2003. 在构造活动区谱加速度放大系数。美国地震学会通报,93(1):332-352;分类号:10.1785/0120020049Sonmez, H. 2003.修改的液化潜能指数和一个液化易发区(Inegol-土耳其)液化灾害空间。环境地质44(7):862- 871Sonmez, B., Ulusay, R. & Sonmez, H. 2008. 一个液化引起地面上的故障识别研究,并以1999年科贾埃利集集地震为依据,工程地质,97个计算数据:112-125。Investigating the effect of the thickness of the surficial non-liquefiable layer to the surface manifestation of liquefaction-induced failures G. Papathanassiou Department of Geology, Aristotle University of Thessaloniki, GreeceABSTRACT: The aim of this study was to investigate the influence of thenon-liquefiable cap layer on the surface manifestations of liquefaction phenomna. In order to achieve this information from boreholes in Turkey, Taiwan and Greece, obtained during post-earthquake field investigations, were collected and thevalue of Liquefaction Potential Index (LPI) at each site was determined.Most of borings were at places where liquefaction phenomena was observed,with a few drilled at non-liquefied sites.Afterwards, a diagram was developed based on the estimated thickness of the cap layer (H) and he value of LPI, where the liquefied and non-liquefied cases were plotted. As a result of this study, zonesof likely, possible and unlikely occurrence of liquefaction manifestation were delineated into this diagram of LPI versus the thickness of the cap layer.The outcome of this research can be used for the prediction of liquefaction-induced ground disruption and for the mitigation ofthis geological hazard. 1.Brief introduction The evaluation of the liquefaction potential of a soil layer is necessary if damage to buildings and other infrastructure is to be avoided. Several scientistshave studied and proposed approaches for the evaluation of the liquefaction potential of a soil layer although few reports examine or report on liquefactioninduced ground deformation. This is despite Youd & Garris (1995) concludingthat the ability to accurately predict the potential for ground-surface disruption is a major concern for geotechnologists charged with the safe siting of constructed works. Ishihara (1985) proposed empirical criteria for assessing the likelihood of liquefaction manifesting at the ground surface by correlating the thickness of the overlying non-liquefiable layer, H 1, (cap layer) and thicknesses of the liquefiable layers, H 2, beneath it. The chart developed correlated these two parameters of thicknesses with the value of peak ground acceleration and proposed boundary curves for discriminating between occurrence and non-occurrence of surface effects of liquefaction (Sonmez et al., 2008). The data collected by Ishihara (1985) comes from areas with and without liquefaction triggered by two earthquakes,the 1983 nihonkai-Chubu earthquake of Japan (M = 7.7) and the 1976 Tangshan earthquake of China (M = 7.8). The criteria published in the Japanese bridge code were applied to estimate the the thicknesses and liquefaction potential of the soil layers. In the 1990's, Youd & Garris (1995) used a data set of 308 borehole logs from areas where liquefaction could be expected or was noted after 15 earthquakes ranging in magnitude (M) from M5.3 to M8.0.They used the proceduredeveloped by Seed et al. (1985), the simplified procedure, for the calculation of layer thicknesses. An important parameter in the study is that the materialsare highly susceptible to liquefaction. Youd & Garris (1995) classified the surface effects into three groups: sand boils and small ground fissures without lateral ground displacement; sand boilsplus the effects of ground oscillation; and surface effects induced by lateral spreads. In addition,they developed a fourth group for areas that did not manifestFigure 1. Chart correlating liquefaction severity index with the thickness of non liquefiable cap layer in order to define zones defined by the presence or absence of liquefaction at the ground surface(Sonmez et al., 2008). They concluded that the occurrence or not of liquefaction effects at the ground surface for sites not affected by lateral spread or ground oscillation are generally correctly predicted by the diagrams proposed by Ishihara (1985) and that sites where liquefaction-induced ground oscillation and lateral spreading effects were observed, are poorly predicted (Youd & Garris, 1995).Furthermore, Yuan et al. (2003) and Chu et al. (2004) applied the charts proposed by Ishihara (1985) in cases associated with the 1999 Chi-Chi earthquake. The former study concluded that these diagrams match the data with only a few exceptions and the latter one that the liquefied sites were inconsistent with the method of Ishihara (1985).Sonmez et al. (2008) designed a new chart for assessing the potential for liquefaction effects to manifest at the ground surface by correlating the Liquefaction Severity Index (LSI) with the thickness of non-liquefiable cap layer. Their data were collected from in-situ tests performed in liquefied and non-liquefied sites triggered by the earthquakes that occurred in Turkey and Taiwan in 1999. The proposed chart (Fig. 1) is divided in three zones,defined as:where liquefaction-induced ground surface disruption may be observed (zone A), liquefaction-induced ground surface disruption may is not observed (zone C) and a transition area between zones A and C (zone B). However, as Sonmez et al (2008) pointed out, the Ishihara procedure only takes into account the cap layer and the underlying liquefiable layer and doesnot consider the presence of a number of alternating liquefied and nonliquefiedlayers and their combined effects. Sonmez et al. (2008) used the liquefaction severity index instead of the thickness of liquefiable layer. This study avoids this limitation by developing a diagram that can be used for the prediction of liquefaction surface manifestation based on the correlation of the thickness of the non-liquefiable cap layer, H, with the Liquefaction Potential Index (LPI). This index, LPI, was selected because it can describe the performance of the whole soil column as noted by several researchers (Iwasaki et al.1978;Sonmez etal. 2003; Papathanassiou, 2008; Holzer, 2008).The data that were used in this study were provided by SPT tests conducted in areas with and without surface liquefaction effects after the Kocaeli, Turkey 1999, Chi-Chi, Taiwan 1999 and Lefkada, Greece 2003 events. 2.The Dataset And The Estlmation of Lpt2.1 The dataset In this study, the dataset compiled by Papathanassiou (2008) was used. This included 79 SPT borings from post-earthquake in-situ tests at liquefied and non-liquefied sites in Taiwan, Turkey and Greece were collected. data from the 1999 Chi-Chi, Taiwan,earthquake,was downloaded from http:/peer.berkeley.edu/lifelines/research_projects/3A02 and http:/www.ces.clemson.edu/chichi/TW-LIQ/In-situ-Test.html. Information from the 1999 Kocaeli earthquake, was downloaded from http:/peer.berkeley.edu/publications/turkey/adapazari/index.html. data from the 2003 Lefkada, Greece earthquake were obtained from 9 SPT borings collected by Kede (2004). The Taiwanese SPT data was from sites where lateral spreading, building settlement or sand boils were observed and sites without evidence of liquefaction. The SPT data from Turkey was from the town of Adapazari, at sites where phenomena such as sand boils and building settlement were observed, and at sites where liquefaction-induced lateral spreading phenomena occurred (Bray et al., 2001). The SPT profiles, from the 2003 Lefkada earthquake, Greece, were drilled mainly in the municipality of the island. 2.2 Evaluating the factor of safety against liquefaction to get the LPI of the soil column In this study, the factor of safety against liquefaction per layer, fs, was initially calculated as the ratio of CRR (cyclic resistance ratio) to the CSR (cyclic stress ratio),based on the deterministic procedure,commonly referred to as the"simplified procedure" (Seed & Idriss,1971;Seed et al., 1985 and Youd et al., 2001). The moment magnitude Mw of Chi-Chi (Taiwan), Kocaeli (Turkey) and Lefkada (Greece) earthquakes was 7.6, 7.4 and 6.2 respectively.The meanpeakhorizontal acceleration in the Taiwanese towns of Yanlin, nantou,Wufeng,dachun and Zangbin was 0.18 g, 0.38 g, 0.67 g (Chu et al., 2004) and 0.19 g,0.12 g(Juang, 2002),respectively. The data set for the Kocaeli 1999 earthquakeis fromSPT borings in