欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    北师大版九年级上册数学2.6应用一元二次方程ppt课件(3课时).ppt

    • 资源ID:2315271       资源大小:1.55MB        全文页数:57页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师大版九年级上册数学2.6应用一元二次方程ppt课件(3课时).ppt

    ,2.6 应用一元二次方程,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时 行程问题及几何问题,义务教育教科书(BS)九上数学课件,学习目标,1.掌握列一元二次方程解决几何问题、数学问题,并能根据具体 问题的实际意义,检验结果的合理性.(重点、难点)2.理解将实际问题抽象为方程模型的过程,并能运用所学的知识 解决问题,问题:如图,在一块长为 92m,宽为 60m 的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为 885m2 的 6 个矩形小块,水渠应挖多宽?,分析:设水渠宽为xm,将所有耕地的面积拼在一起,变成一个新的矩形,长为(92 2x)m,宽(60-x)m.解:设水渠的宽应挖 x m.(92-2x)(60-x)=6885.,导入新课,例1:如图,某海军基地位于A处,在其正南方向200nmile处有一目标B,在B的正东方向200nmile处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向.一艘军舰沿A出发,经B到C匀速巡航,一艘补给船同时从出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.,(1)小岛D与小岛F相距多少海里?,东,北,A,B,C,D,F,解:连接DF.AD=CD,BF=CF,DF是ABC的中位线.DFAB,且DF=AB,,导入新课,ABBC,AB=BC=200n mile,DFBC,DF=100n mile.,东,北,A,B,C,D,F,(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里(结果精确到0.1海里)?,E,解:设相遇是补给船航行了x n mile,那么 DE=x n mile,AE+BE=2x n mile,EF=AB+BF-(AB+BE)=(300-2x)n mile.在RtDEF中,根据勾股定理可得方程 x2=1002+(300-2x)2.整理得:3x2-1200 x+100000=0,解方程得(不符题意舍去),例2:九章算术“勾股”章中有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙各行几何?”,大意是说:已知甲,乙二人同时从同一地点出发,甲的速度是7,乙的速度是3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲,乙各走了多远?,解:设甲,乙相遇时所用时间为x,根据题意,得(7x-10)2=(3x)2+10 2.整理得 2x2-7x=0.解方程,得 x1=3.5,x2=0(不合题意,舍去).3x=33.5=10.5,7x=73.5=24.5.答:甲走了24.5步,乙走了10.5步.,乙:3x,甲:,10,A,B,C,7x-10,例3:一块长和宽分别为60cm和40cm的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体,使它的底面积为800cm2.求截去正方形的边长.,800cm2,x,x,解:设截取正方形的边长为 x m,根据题意,得(60-2x)(40-2x)=800.整理得 x2-50 x+400=0.解方程,得 x1=10,x2=40(不合题意,舍去).答:截取正方形的边长为10cm.,(60-2x),(40-2x),1.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,那么几秒后五边形APQCD的面积为64cm2?,A,B,C,D,Q,P,分析:求五边形APQCD的面积为64cm2时的时间可以转换为求PQB面积为(612-64)cm2的时间,解:设所需时间为 t s,根据题意,得 2t(6-t)2=612-64.整理得 t2-6t+8=0.解方程,得 t1=2,t2=4.答:在第2秒和第4秒是五边形面积是 64cm2.,(6-t),2t,针对练习,1.有这样一道阿拉伯古算题:有两笔钱,一多一少,其和等于20,积等96,多的一笔被许诺赏给赛义德,那么赛义德得到多少钱?,解:设赛义德得到钱数为 x,根据题意得,x(20-x)=96.整理,得 x 2-20 x+96=0.解方程,得 x1=12,x2=8(不符合题意,舍去).答:赛义德得到钱数为 12.,当堂练习,解:设x秒后,PCQ的面积是Rt ABC面积的一半.根据题意 整理,得 x2-14x+24=0.解方程,得 x1=2,x2=12(不符题意,舍去).答:2秒后,PCQ的面积是Rt ABC面积的一半.,2.如图,在RtABC中,C=90,点P,Q同时由A,B两点出发,分别沿AC,BC方向向点C匀速移动(到点C为止),它们的速度都是1m/s.几秒后PCQ的面积是RtACB面积的一半?,利用一元二次方程解决行程问题,列方程步骤:,应用类型,几何问题,行程问题,面积问题,动点问题,审,设,列,解,检,答,课堂小结,见本课时练习,课后作业,谢谢!,2.6 应用一元二次方程,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第2课时 营销问题及平均变化率问题,义务教育教科书(BS)九上数学课件,1.会用一元二次方程的方法解决营销问题及平均变化率 问题.(重点、难点)2.进一步培养学生化实际问题为数学问题的能力及分析问 题解决问题的能力,学习目标,导入新课,问题引入,小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?,例1:新华商场销售某种冰箱,每台进价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销价每降低50元时,平均每天能多售4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?,分析:本题的主要等量关系是:每台冰箱的销售利润平均每天销售冰箱的数量=5000元.如果设每台冰箱降价x元,那么每台冰箱的定价就是(2900-x)元,每台冰箱的销售利润为(2900-x-2500)元,平均每天销售冰箱的数量为 台,这样就可以列出一个方程,从而使问题得到解决.,讲授新课,解:设每台冰箱降价x元,根据题意,得 整理,得:x2-300 x+22500=0.解方程,得:x1=x2=150.2900-x=2900-150=2750.答:每台冰箱的定价应为2750元.,例2:某超市将进价为30元的商品按定价40元出售时,能卖600件已知该商品每涨价1元,销售量就会减少10件,为获得10000元的利润,且尽量减少库存,售价应为多少?,解析:销售利润=(每件售价-每件进价)销售件数,若设每件涨价x元,则售价为(40+x)元,销售量为(600-10 x)件,根据等量关系列方程即可.,解:设每件商品涨价x元,根据题意,得(40+x-30)(600-10 x)=10000.即 x2-50 x+400=0.解得 x1=10,x2=40.经检验,x1=10,x2=40都是原方程的解.,当x=10时,售价为:40+10=50(元),销售量为:600-1010=500(件).当x=40时,售价为:40+40=80(元),销售量为:600-1040=200(件).要尽量减少库存,售价应为80元.,某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?,解:设每盆花苗增加的株数为x株,则每盆花苗有(x+3)株,平均单株盈利为(3-0.5x)元.根据题意,得.(x+3)(3-0.5x)=10.,思考:这个问题设什么为x?有几种设法?如果直接设每盆植x株,怎样表示问题中相关的量?如果设每盆花苗增加的株数为x株呢?,针对练习,整理,得 x2-3x+2=0.解这个方程,得 x1=1,x2=2.经检验,x1=1,x2=2 都符合题意.答:要使每盆的盈利达到10元,每盆应植入4株或5株.,总结归纳,利润问题常见关系式基本关系:(1)利润售价_;(3)总利润_销量,进价,单个利润,填空:1.前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,去年生产1吨甲种药品的成本是4650 元,则下降率是.如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.,探究归纳,7%,4324.5,下降率=,下降前的量-下降后的量,下降前的量,2.前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,设下降率是x,则去年生产1吨甲种药品的成本是 元,如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.,下降率x,第一次降低前的量,5000(1-x),第一次降低后的量,5000,下降率x,第二次降低后的量,第二次降低前的量,5000(1-x)(1-x),5000(1-x)2,5000(1-x),5000(1-x)2,例3 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,试求甲种药品成本的年平均下降率是多少?,典例精析,解:设甲种药品的年平均下降率为x.根据题意,列方程,得,5 000(1x)2=3000,,解方程,得,x10.225,x21.775.,根据问题的实际意义,甲种药品成本的年平均下降率约为22.5.,下降率不能超过1.,练一练 前年生产1吨乙种药品的成本是6000元.随着生产技术的进步,现在生产1吨乙种药品的成本是3600元,试求乙种药品成本的年平均下降率?,解:设乙种药品的年平均下降率为y.根据题意,列方程,得,6 000(1y)2=3 600.,解方程,得,y10.225,y21.775.,根据问题的实际意义,乙种药品成本的年平均下降率约为22.5.,解后反思,答:不能.绝对量:甲种药品成本的年平均下降额为(5000-3000)2=1000元,乙种药品成本的年平均下降额为(6000-3000)2=1200元,显然,乙种药品成本的年平均下降额较大,问题1 药品年平均下降额大能否说年平均下降率(百分数)就大呢?,答:不能.能过上面的计算,甲、乙两种药品的年平均下降率相等.因此我们发现虽然绝对量相差很多,但其相对量(年平均下降率)也可能相等,问题2 从上面的绝对量的大小能否说明相对量的大小呢?也就说能否说明乙种药品成本的年平均下降率大呢?,问题3 你能总结出有关增长率和降低率的有关数量关系吗?,类似地 这种增长率的问题在实际生活中普遍存在,有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1x)n=b(其中增长取“+”,降低取“”).,例4 某公司去年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率,分析:设这个增长率为x,则二月份营业额为:_.三月份营业额为:_.根据:.作为等量关系列方程为:,200(1+x),一月、二月、三月的营业额共950万元.,200(1+x)2,200+200(1+x)+200(1+x)2=950,例4 某公司去年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率,解:设这个增长率为x.根据题意,得,答:这个增长率为50%.,200+200(1+x)+200(1+x)2=950,整理方程,得,4x2+12x-7=0,,解这个方程得,x1=-3.5(舍去),x2=0.5.,增长率不可为负,但可以超过1.,平均变化率问题中常见概念,1.增长率问题,a(1+x)2=b,其中a为增长前的量,x为增长率,2为增长次数,b为增长后的量.,2.降低率问题,a(1-x)2=b,其中a为降低前的量,x为降低率,2为降低次数,b为降低后的量.注意1与x位置不可调换.,总结归纳,1.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明,这种台灯的售价每上涨1元,某销售量就将减少10个,为了实现平均每月10000元销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?,分析:设台灯的售价因定位x元,则应进台灯为 600-10(x-40)个,单个台灯的利润为(x-30)元,则每月总利润为(x-30)(600-10(x-40).,解:设台灯的售价因定位x元.根据题意,得(x-30)(600-10(x-40)=10000.整理,得:x2-130 x+4000=0.解得:x1=50,x2=80.当x=50 时,应进台灯数:600-10(50-40)=500(个).当x=80 时,应进台灯数:600-10(80-40)=200(个).,当堂练习,2.青山村种的水稻去年平均每公顷产7200千克,今年平均每公顷产8712千克,求水稻每公顷产量的年平均增长率.,解:设水稻每公顷产量的平均增长率为x,根据题意,得 系数化为1得,直接开平方得,则,答:水稻每公顷产量的年平均增长率为10%.,7200(1+x)2=8712,(1+x)2=1.21,1+x=1.1,1+x=-1.1,x1=0.1,x2=-1.1,能力提升菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.,解:(1)设平均每次下调的百分率为x,由题意,得 5(1x)2=3.2,解得 x1=20%,x2=1.8(舍去)平均每次下调的百分率为20%;,(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.20.95000=14400(元);方案二所需费用为:3.250002005=15000(元),1440015000,小华选择方案一购买更优惠.,利用一元二次方程解决营销问题及平均变化率问题,营销问题,平均变化率问题,课堂小结,a(1+x)2=b,其中a为增长前的量,x为增长率,2为增长次数,b为增长后的量.,a(1-x)2=b,其中a为降低前的量,x为降低率,2为降低次数,b为降低后的量.注意1与x位置不可调换.,见本课时练习,课后作业,谢谢!,2.6 应用一元二次方程,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第3课时 其他问题,义务教育教科书(BS)九上数学课件,学习目标,1.掌握列一元二次方程解决传播、数学问题,并能根据具体 问题的实际意义,检验结果的合理性.(重点、难点)2.理解将实际问题抽象为方程模型的过程,并能运用所学的知识 解决问题,导入新课,图片引入,传染病,一传十,十传百,讲授新课,问题1 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?,分析:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:,合作探究,第2轮,小明,1,2,x,第1轮,第1轮传染后人数x+1,小明,第2轮传染后人数x(x+1),注意:不要忽视小明的二次传染,x1=,x2=.,根据示意图,列表如下:,解方程,得,答:平均一个人传染了_个人.,10,-12,(不合题意,舍去),10,解:设每轮传染中平均一个人传染了x个人.,(1+x)2=121,注意:一元二次方程的解有可能不符合题意,所以一定要进行检验.,1+x=(1+x)1,1+x+x(1+x)=(1+x)2,想一想 如果按照这样的传染速度,三轮传染后有多少人患流感?,第2种做法 以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331人.,分析,第1种做法 以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331人.,(1+x)3,列一元二次方程解应用题时,要注意应用题的内在数量关系,选择适当的条件列代数式,选择剩下的一个关系列方程.在解出方程后要注意检验结果符不符合题意或实际情况,要把不符合实际情况的方程的根舍去.,总结归纳,例1 某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有 100 台电脑被感染请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4 轮感染后,被感染的电脑会不会超过 7000 台?,解:设每轮感染中平均一台电脑会感染 x 台电脑,则1xx(1x)100,即(1x)2100.解得 x19,x211(舍去)x9.,4 轮感染后,被感染的电脑数为(1x)41047000.,答:每轮感染中平均每一台电脑会感染 9 台电脑,4 轮感染后,被感染的电脑会超过 7000 台,典例精析,例2:一个数平方的2倍等于这个数的7倍,求这个数.,解:设这个数为x,根据题意,得 2x2=7x.整理,得:2x2-7x=0,x(2x-7)=0.x=0 或 2x 7=0.,例3:有一个两位数,个位数字与十位数字的和为14,交换为之后,得到新的两位数,比这两个数字的积还大38,求这个两位数.,解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为 10 x+(14-x).根据题意,得 10 x+(14-x)-x(14-x)=38.整理,得 x2-5x-24=0,解得 x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8 时,14-x=6.所以这个两位数是68.,针对练习,两个连续奇数的积是 323,求这两个数解:设较小奇数为 x,则另一个为 x+2,依题意,得 x(x+2)=323.整理后,得 x2+2x-323=0.解得 x1=17,x2=-19.由 x=17,得 x+2=19.由 x=-19,得 x+2=-17.答:这两个奇数是 17,19 或者-19,-17.,若是设两个奇数分别为(x-1),(x+1),请帮忙写出解答过程,解:设较小奇数为 x-1,则另一个为 x+1,依题意,得(x-1)(x+1)=323.整理后,得 x2=324.解得 x1=18,x2=-18.由 x=18,得 x-1=17,x+1=19.由 x=-18,得 x-1=-19,x+1=-17.答:这两个奇数是 17,19 或者-19,-17.,1.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980 B.x(x+1)=1980 C.x(x-1)=1980 D.x(x-1)=19802.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73 B.1+x+x2=73 C.1+x2=73 D.(1+x)2=73,当堂练习,D,B,3.一个两位数,十位上的数字与个位上的数字之和为5,把这个数的个位数字与十位数字对调后,所得的新数与原数的积为736,求原数.,解:设原数的个位上数字为x,十位上的数字为(5-x),则原数表示为10(5-x)+x,对调后新数表示为10 x+(5-x),根据题意列方程得,10(5-x)+x 10 x+(5-x)=736.,化简整理得,x2-5x+6=0,,解得,x1=3,x2=2.,所以这个两位数是32或23.,4.甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感?,解:设每天平均一个人传染了x人,,解得 x1=-4(舍去),x2=2.,答:每天平均一个人传染了2人,这个地区一共将会有2187人患甲型流感.,1+x+x(1+x)=9,,即(1+x)2=9.,9(1+x)5=9(1+2)5=2187,,(1+x)7=(1+2)7=2187.,5.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排15场比赛,应邀请多少个球队参加比赛?,答:应邀请6支球队参赛.,解:设应邀请x支球队参赛,由题意列方程得,化简为,x2-x=30,,解得,x1=-5(舍去),x2=6.,利用一元二次方程解决几何问题及数字问题,列方程步骤:,应用类型,传播问题,数字问题,审,设,列,解,检,答,课堂小结,见本课时练习,课后作业,谢谢!,

    注意事项

    本文(北师大版九年级上册数学2.6应用一元二次方程ppt课件(3课时).ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开