博弈论与信息经济学.ppt
博弈论与信息经济学,主讲:何一鸣(博士)联系:,教材:经济博弈论(第三版)复旦大学出版社,2007年版出勤:30(点名概率随上课人数的变化相机决策博弈)考试:开卷有益(论文或出题形式取决于学生与学院的博弈结果,70),参考书目:,阅读书目http:/,第一章 导论,1.1 什么是博弈论,1.1.1 从游戏到博弈,博弈就是策略对抗,或策略有关键作用的游戏博弈Game,博弈论Game Theory,Game即游戏、竞技游戏和经济等决策竞争较量的共同特征:规则、结果、策略选择,策略和利益相互依存,策略的关键作用 游戏下棋、猜大小 经济寡头产量决策、市场阻入、投标拍卖 政治、军事美国和伊拉克、以色列和巴勒斯坦,1.1.2 一个非技术性定义,四个核心方面 博弈的参加者(Player)博弈方 各博弈方的策略(Strategies)或行为(Actions)博弈的次序(Order)博弈方的得益(Payoffs),1.2 几个经典博弈模型1.2.1 囚徒的困境,囚徒的困境是图克(Tucker)1950年提出的该博弈是博弈论最经典、著名的博弈该博弈本身讲的是一个法律刑侦或犯罪学方面的问题,但可以扩展到许多经济问题,以及各种社会问题,可以揭示市场经济的根本缺陷,一、基本模型,-5,-5,0,-8,-8,0,-1,-1,坦 白,不坦白,坦 白,不坦白,两个罪犯的得益矩阵,囚徒 2,囚徒1,囚徒1:坦白囚徒2:坦白,二、双寡头削价竞争,政府组织协调的必要性和重要性,寡头1:低价(70)寡头2:低价(70),1.3 博弈论历史和发展简述,2000年前我国古代的“齐威王田忌赛马”1500年前巴比伦犹太教法典“婚姻合同问题”等。1838年古诺寡头模型。1883年伯特兰德寡头竞争模型。1913年齐默罗象棋博弈定理、“逆推归纳法”1921-1927年波雷尔混合策略的第一个现代表述,有数种策略两人博弈的极小化极大解 1928年诺伊曼和摩根斯坦扩展形博弈定义,证明有限策略两人零和博弈有确定结果,1.3.1博弈论的形成,冯.诺伊曼和摩根斯坦博弈论和经济行为Theory of Games and Economic Behavior 1944引进扩展形(extensive form)表示和正规形(normal form)或称策略形(strategy form)、矩阵形(matrix form)表示提出稳定集(stable sets)解概念正式提出创造博弈论一般理论的主意给出博弈论研究的一般框架、概念术语和表述方法,1.3.2 博弈论的成长和发展一、第一个研究高潮,本世纪40年代末和50年代初,1950年纳什提出“纳什均衡”(Nash equilibrium)概念和证明纳什定理,发展非合作博弈的基础理论。1950年Melvin Dresher和Merrill Flood在兰德公司(美国空军)“囚徒的困境”(Prisons dilemma)博弈实验,(Howard Raiffa)独立进行这个博弈实验;1952-1953年期间(L.S.Shapley)和(D.B.Gillies)提出“核”(Core)作为合作博弈的一般解概念Shapley提出了合作博弈的“Shapley值”(Shapley value)概念等。奥曼(R.J.Aumann)“40年代末50年代初是博弈论历史上令人振奋的时期,原理已经破茧而出,正在试飞它们的双翅,活跃着一批巨人。”,二、50年代中后期一直到70年代博弈论发展的青年期,1954-1955年提出了“微分博弈”(Differential games)的概念。奥曼则在1959年提出了“强均衡”(Strong equilibrium)的概念。“重复博弈”(Repeated games)也是在50年代末开始研究的,这自然引出了关于重复博弈的“民间定理”(Folk theorem)。1960年(Thomas C.Schelling)引进了“焦点”(Focal point)的概念。博弈论在进化生物学(Evolutionary Biology)中的公开应用也是在60年代初出现的。,塞尔腾(Selten)1965提出“子博弈完美纳什均衡”(subgame perfect Nash equilibrium)1975年提出的“颤抖手均衡”(Trembling hand perfect equilibrium)海萨尼(Harsanyi)1967-1968三篇构造不完全信息博弈理论的系列论文,“贝叶斯纳什均衡”(Bayesian Nash equilibrium)。海萨尼1973年提出关于“混合策略”的不完全信息解释,以及“严格纳什均衡”(Strict Nash equilibrium)。70年代“进化博弈论”(Evolutionary game theory)的重要发展,(John Maynard Smith)1972年引进“进化稳定策略”(Evolutionarily stable strategy,ESS)等。“共同知识”(Common knowledge)的重要性,因为奥曼1976年的文章引起广泛的重视。,三、40年代末到70年代末是博弈论发展的重要阶段,这个时期博弈理论仍然没有成熟,理论体系还比较乱,概念和分析方法很不统一,在经济学中的作用和影响还比较有限,但这个时期博弈论研究的繁荣和进展却是非常显著的。对这一阶段博弈论研究的迅速发展,除了理论发展自身规律的作用以外,全球政治、军事、经济特定环境条件的影响(战争和冷战时期的军事对抗和威慑策略研究的需要,经济竞争、国际经济竞争的加剧),以及经济学理论发展本身的需要等,都起了重要的作用。正是因为有了这一阶段博弈论研究的繁荣发展,才有80、90年代博弈论的成熟和对经济学的博弈论革命。,1.3.3博弈论的成熟及与主流经济学的融合一、80、90年代是博弈论走向成熟的时期,1981(Elon Kohlberg)“顺推归纳法”(Forward induction)克瑞泼斯(David M.kreps)和威尔孙(Robert Wilson)1982年提出“序列均衡”(Sequential equilibria)1982年斯密(John Maynard Smith)出版了进化和博弈论()1984年由伯恩海姆(B.D.Bernheim)和皮尔斯(D.G.Pearce)提出“可理性化性”(Rationalizability)海萨尼和塞尔腾1988年提出了在非合作和合作博弈中均衡选择的一般理论和标准,1991年弗得伯格(D.Fudenberg)和泰勒尔(J.Tirole)首先提出了“完美贝叶斯均衡”(Perfext Bayesian equilibrium)的概念,二、博弈论和经济学诺贝尔奖,1994:非合作博弈:纳什(Nash)、海萨尼(Harsanyi)、泽尔腾(Selten)1996:不对称信息激励理论:莫里斯(Mirrlees)和维克瑞(Vickrey)2001:不完全信息市场博弈:阿克罗夫(Akerlof)、斯宾斯(Spence)、斯蒂格里兹(Stiglitze)2005:合作博弈论:Aumann,Shcelling2007:机制设计:Hurwicz,Maskin,Myerson,生于1928年6月13日。任普林斯顿大学数学系教授。1950,约翰纳什获得美国普林斯顿高等研究院的应用博士学位,他那篇仅仅27页的博士论文中有一个重要发现,这就是后来被称为“纳什均衡”的博弈理论。,1920年5月29日出生于匈牙利布达佩斯,2000年在美国柏克莱逝世。海萨尼的父母曾希望他将来成为一个药商,但海萨尼自己爱好研究哲学和数学。但选择了布达佩斯大学的药学专业。1944年初,他获得了药学硕士学位。但是,1944年3月,德国军队占领了匈牙利。海萨尼从5月到11月被强迫到一个苦力营中劳动。同年11月,纳粹当局决定将海萨尼所在的苦力营从布达佩斯放逐到奥地利的一个集中营去。但是,海萨尼很幸运地就在列车开往奥地利之前,从布达佩斯火车站逃脱。一位他认识的耶钱教神父让他躲在修道院的地窖里避难。海萨尼确实是够幸运的,因为后来他那些苦力营的同伴绝大多数都死于集中营里。战后的1946年,海萨尼重新到布达佩斯大学注册入学,攻读博士学位,专业是哲学,兼修社会学和心理学。海萨尼于1947年6月获得布达佩斯大学哲学博士学位。1948年6月,由于海萨尼与当局政见不同,他被迫从研究所辞职。1950年4月,海萨尼逃到了奥地利。1950年12月30日,他到达澳大利亚的悉尼,在悉尼的工厂当劳工的同时,在悉尼大学修读经济学夜间课程,并于1953年取得文学硕士。在悉尼读书时,他开始在经济期刊(包括JournalofPoliticalEconomy和theReviewofEconomicStudies)发表研究论文。由于拥有学位,他得以于1956年在布里斯班昆士兰大学取得教席。在1958年,他获得了洛克菲勒奖学金,在美国斯坦福大学肯尼斯约瑟夫阿罗的指导下写了一篇关于博弈论的论文,并于1959年取得了第二个经济学博士学位。1958年,在堪培拉澳大利亚国立大学以研究员身份工作一段很短的时间后,因为博弈论在澳大利亚仍是默默无闻而感到被孤立。在肯尼斯阿罗和詹姆斯托宾的帮助下,他得以能够迁移到美国,同时于1961年至1963年之间在底特律韦恩州立大学担任经济学教授。1964年,他转到美国柏克莱加州大学,并一直留在那里直至他于1990年退休。,1930年10月10日出生于德国的不莱斯劳(Breslau)。泽尔腾考入了法兰克福大学数学系,1957年毕业,获数学硕士学位。而后从事着博弈论及其应用、实验经济学等博弈论的学术研究。1961年,泽尔腾获得法兰克福大学数学博士学位;60年代早期,泽尔腾做了寡头博弈的实验,19671968年度,泽尔腾到加州伯克利分校作访问教授,1972年转到比勒菲尔德大学(University of Bielefeld)工作,1984年至今一直在波恩大学工作。,1936.07.05亚当斯密的同乡。莫里斯从小就显露出了对数学的浓厚兴趣和超乎寻常的天分。1957年,莫里斯以第一名的骄人成绩从爱丁堡大学数学系毕业,顺利进入剑桥大学,拿下了博士学位。后来近30年的时间里,莫里斯一直执教于牛津,现在是剑桥大学和香港中文大学的经济学教授。除了担任过国际计量经济学会会长、英国皇家经济学会会长、中国政府经济顾问等职,1997年,莫里斯教授还被英国女王授予了“爵士”爵位。,1914年,维克瑞生于加拿大 1935年获耶鲁大学理学学士学位 1937年获哥伦比亚大学硕士学位 1945年起,维克瑞任职于哥伦比亚大学。1947年又获哥伦比亚大学哲学博士学位 19641967年,他担任哥伦比亚大学经济系主任,在此期间曾任纽约市城市经济协会会长 1967年成为加利福尼亚斯坦福行为科学高级研究中心研究员与经济计量学会会员 1971年出任澳大利亚纳施大学客座讲师 1973年出任美国经济研究局局长 1974年,他出任联合国发展规划预测和政策中心财政顾问,并成为美国文理研究院研究员。1979年获芝加哥大学人文学博士 在得奖三天之后,在前去开会的途中去世。他在诺贝尔的光环照耀中倒下了,其一生为学术研究鞠躬尽瘁,最后为其人生画上了一个美丽的句号。,1940.6.17,1966年获美国麻省理工学院博士头衔,现为美国加利福尼亚州大学伯克利(UCBerkeley)经济学教授。,1943.11.7生于美国新泽西州,1962-1966年就读于普林斯顿大学并获哲学学士学位;1968年在牛津大学获数学硕士学位,并获得该校罗氏奖学金;1972年在哈佛大学获经济学博士学位。,约瑟夫斯蒂格利茨(Joseph E.Stiglitz),2001年诺贝尔经济学奖获得者,Joseph Eugene Stiglitz,ForMemRS,FBA,(born February 9,1943)is an American economist and a professor at Columbia University.He is a recipient of the Nobel Memorial Prize in Economic Sciences(2001)and the John Bates Clark Medal(1979).He is also the former Senior Vice President and Chief Economist of the World Bank.,Aumann(born June 8,1930)is an Israeli-American mathematician and a member of the United States National Academy of Sciences.He is a professor at the Center for the Study of Rationality in the Hebrew University of Jerusalem in Israel.He also holds a visiting position at Stony Brook University and is one of the founding members of the Center for Game Theory in Economics at Stony Brook,Thomas Crombie Schelling(born 14 April 1921)is an American economist and professor of foreign affairs,national security,nuclear strategy,and arms control at the School of Public Policy at University of Maryland,College Park.He is also co-faculty at the New England Complex Systems Institute.He was awarded the 2005 Nobel Memorial Prize in Economic Sciences(shared with Robert Aumann)for having enhanced our understanding of conflict and cooperation through game-theory analysis.,Hurwicz(August 21,1917 June 24,2008)was a Russian-born American economist and mathematician.His nationality of origin was Polish.He was Jewish.He originated incentive compatibility and mechanism design,which show how desired outcomes are achieved in economics,social science and political science.Interactions of individuals and institutions,markets and trade are analyzed and understood today using the models Hurwicz developed,Maskin(born December 12,1950)is an American economist and Nobel laureate recognized with Leonid Hurwicz and Roger Myerson for having laid the foundations of mechanism design theory.He is the Albert O.Hirschman Professor of Social Science at the Institute for Advanced Study,and a visiting lecturer with the rank of Professor at Princeton University.,Myerson(born March 29,1951)is an American economist and Nobel laureate recognized with Leonid Hurwicz and Eric Maskin for having laid the foundations of mechanism design theory.A professor at the University of Chicago,he has made contributions as an economist,as an applied mathematician,and as a political scientist.,第二章 完全信息静态博弈2.1 上策均衡,上策:不管其它博弈方选择什么策略,一博弈方的某个策略给他带来的得益始终高于其它的策略,至少不低于其他策略的策略 囚徒的困境中的“坦白”;双寡头削价中“低价”。上策均衡:一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果上策均衡不是普遍存在的,2.1.1 严格下策反复消去法,严格下策:不管其它博弈方的策略如何变化,给一个博弈方带来的收益总是比另一种策略给他带来的收益小的策略严格下策反复消去:,2.1.2 划线法,2.1.3 箭头法,2.2 纳什均衡 2.2.1 纳什均衡的定义,策略空间:博弈方 的第 个策略:博弈方 的得益:博弈:纳什均衡:在博弈 中,如果由各个博弈方的各一个策略组成的某个策略组合 中,任一博弈方 的策略,都是对其余博弈方策略的组合 的最佳对策,也即 对任意 都成立,则称 为 的一个纳什均衡,2.2.2 纳什均衡与严格下策反复消去法,上策均衡肯定是纳什均衡,但纳什均衡不一定是上策均衡命题2.1:在n个博弈方的博弈 中,如果严格下策反复消去法排除了除 之外的所有策略组合,那么 一定是该博弈的唯一的纳什均衡命题2.2:在n个博弈方的博弈中 中,如果 是 的一个纳什均衡,那么严格下策反复消去法一定不会将它消去 上述两个命题保证在进行纳什均衡分析之前先通过严格下策反复消去法简化博弈是可行的,2.3 无限策略分析和反应函数2.3.1 古诺的寡头模型,寡头产量竞争以两厂商产量竞争为例,4.5,4.5,5,3.75,3.75,5,4,4,不突破,突破,厂商2,不突破,突破,厂商1,以自身最大利益为目标:各生产2单位产量,各自得益为4以两厂商总体利益最大:各生产1.5单位产量,各自得益为4.5,两寡头间的囚徒困境博弈,2.3.2 反应函数,古诺模型的反应函数,理性局限和古诺调整,2.3.3 伯特兰德寡头模型,价格竞争寡头的博弈模型产品无差别,消费者对价格不十分敏感,2.3.4 公共资源问题,公共草地养羊问题,以三农户为例 n=3,c=4,合作:总体利益最大化,竞争:个体利益最大化,2.4 混合策略和混合策略纳什均衡2.4.1 严格竞争博弈和混合策略的引进,一、猜硬币博弈,(1)不存在前面定义的纳什均衡策略组合(2)关键是不能让对方猜到自己策略这类博弈很多,引出混合策略纳什均衡概念,二、混合策略、混合策略博弈 和混合策略纳什均衡,混合策略:在博弈 中,博弈方 的策略空间为,则博弈方 以概率分布 随机在其 个可选策略中选择的“策略”,称为一个“混合策略”,其中 对 都成立,且 混合策略扩展博弈:博弈方在混合策略的策略空间(概率分布空间)的选择看作一个博弈,就是原博弈的“混合策略扩展博弈)。混合策略纳什均衡:包含混合策略的策略组合,构成纳什均衡。,三、一个例子,该博弈无纯策略纳什均衡,可用混合策略纳什均衡分析,策略 得益博弈方1(0.8,0.2)2.6博弈方2(0.8,0.2)2.6,2.4.2 多重均衡博弈和混合策略,一、夫妻之争的混合策略纳什均衡,夫妻之争博弈的混合策略纳什均衡 策略 得益博弈方1(0.75,0.25)0.67博弈方2(1/3,2/3)0.75,2.4.3 混合策略和严格下策反复消去法,2.4.4 混合策略反应函数,猜硬币博弈,第三章 完全且完美信息动态博弈3.1 动态博弈的表示法和特点3.1.1 阶段和扩展性表示,阶段:动态博弈中一个博弈方的一次选择行为例子:仿冒和反仿冒博弈,3.1.2 动态博弈的基本特点,策略是在整个博弈中所有选择、行为的计划结果是上述“计划型”策略的策略组合,构成一条路径得益对应每条路径,而不是对应每步选择、行为动态博弈的非对称性先后次序决定动态博弈必然是非对称的。先选择、行为的博弈方常常更有利,有“先行优势”。,3.2 可信性和纳什均衡的问题3.2.1 相机选择和策略中的可信性问题,不同版本的开金矿博弈分钱和打官司的可信性,3.2.2 纳什均衡的问题,第三种开金矿博弈中,(不借-不打,不分)和(借-打,分)都是纳什均衡。但后者不可信,不可能实现或稳定。结论:纳什均衡在动态博弈可能缺乏稳定性,也就是说,在完全信息静态博弈中稳定的纳什均衡,在动态博弈中可能是不稳定的,不能作为预测的基础。根源:纳什均衡本身不能排除博弈方策略中包含的不可信的行为设定,不能解决动态博弈的相机选择引起的可信性问题,3.3 子博弈和子博弈完美纳什均衡3.3.1 子博弈,定义:由一个动态博弈第一阶段以外的某阶段开始的后续博弈阶段构成的,有初始信息集和进行博弈所需要的全部信息,能够自成一个博弈的原博弈的一部分,称为原动态博弈的一个“子博弈”。,3.3.2 子博弈完美纳什均衡,定义:如果一个完美信息的动态博弈中,各博弈方的策略构成的一个策略组合满足,在整个动态博弈及它的所有子博弈中都构成纳什均衡,那么这个策略组合称为该动态博弈的一个“子博弈完美纳什均衡”。子博弈完美纳什均衡能够排除均衡策略中不可信的威胁和承诺,因此是真正稳定的。逆推归纳法是求完美信息动态博弈子博弈完美纳什均衡的基本方法。,3.4 两个经典动态博弈模型3.4.1 寡占的斯塔克博格模型,先后选择产量的产量竞争博弈把古诺模型改为厂商1先选择,厂商2后选择,而非同时选择即可。,产量 得益厂商1 3单位 4.5厂商2 1.5单位 2.25,先行优势,3.4.3 讨价还价博弈,三回合讨价还价,三回合讨价还价博弈结果的讨论,无限回合讨价还价,3.4.4 委托人代理人理论,一、委托人代理人关系经济活动和社会活动中有很多委托人代理人关系,有明显的,也有隐蔽的。工厂和工人、店主和店员、客户和律师、市民和政府、基金购买者和基金管理人等都是。委托人代理人关系的关键特征:不能直接控制,监督不完全,信息不完全,利益的相关性委托人代理人涉及问题:激励机制设计、机制设计理论,委托合同设计问题等,二、无不确定性的委托人代理人模型,R(S)-w(S),w(S)-S,R(E)-w(E),w(E)-E,R(0),0,R(0),0,代理人的选择激励相容约束:w(E)-E w(S)-S w(E)w(S)+E-S,参与约束:,参与约束,委托人的选择,数值例子,12,2,0,0,0,0,7,1,E=2,S=1,W(E)=4,w(S)=2,三、有不确定性但可监督的 委托人代理人博弈,偷懒:委托:0.1*20-w(S)+0.9*10-w(S)0不委托:0.1*20-w(S)+0.9*10-w(S)0,努力委托:0.9*20-w(E)+0.1*10-w(E)0不委托:0.9*20-w(E)+0.1*10-w(E)0,因为可监督,因此代理人报酬与成果无关,只与努力情况有关。不确定性风险由委托人承担。代理人选择同无不确定性情况。,四、有不确定性且不可监督的 委托人代理人博弈,只能根据成果付酬,w是成果函数,而非努力程度函数。不确定性对代理人利益、选择有影响。,努力:0.9*w(20)-E+0.1*w(10)-E0.1*w(20)-S+0.9*w(10-S),接受:0.9*w(20)-E+0.1*w(10)-E0,委托:0.9*20-w(20)+0.1*10-w(10)0,激励相容约束,促使代理人努力的激励相容约束、参与约束,以及委托人选择委托的条件,参与约束,对于委托人来说,就是要根据上述两个条件,以及 E、S的值,选择最佳的工资水平w(20)和w(10),或者它们的差额w(20)-w(10),五、选择报酬和连续努力水平的 委托人代理人博弈,店主和店员的问题,商店的利润,是均值为0的随机变量店员的负效用,是店员的努力机会成本为1店主采用的报酬计算公式店员的得益店员期望得益为店主的得益为,3.5 有同时选择的动态博弈模型3.5.1 国际竞争和最优关税,厂商的得益函数为:,第二阶段厂商选择:,第一阶段政府选择:先把第二阶段根据厂商选择得到结果代入政府得益,再求最优化:,政府的得益函数;,第四章 重复博弈4.1 重复博弈引论4.1.1 为何研究重复博弈,经济中的长期关系人们的预见性未来利益对当前行为的制约长期合同、回头客、长客和一次性买卖的区别有无确定的结束时间,4.1.2 基本概念,有限次重复博弈:给定一个基本博弈G(可以是静态博弈,也可以是动态博弈),重复进行T次G,并且在每次重复G之前各博弈方都能观察到以前博弈的结果,这样的博弈过程称为“G的T次重复博弈”,记为G(T)。而G则称为G(T)的“原博弈”。G(T)中的每次重复称为G(T)的一个“阶段”。无限次重复博弈:一个基本博弈G一直重复博弈下去的博弈,记为G()策略:博弈方在每个阶段针对每种情况如何行为的计划子博弈:从某个阶段(不包括第一阶段)开始,包括此后所有的重复博弈部分均衡路径:由每个阶段博弈方的行为组合串联而成,重复博弈的得益,4.2 有限次重复博弈4.2.1 两人零和博弈的有限次重复博弈,零和博弈是严格竞争的,重复博弈并不改变这一点。以零和博弈为原博弈的有限次重复博弈与猜硬币博弈的有限次重复博弈一样,博弈方的正确策略是重复一次性博弈中的纳什均衡策略。,4.2.2唯一纯策略纳什均衡博弈的 有限次重复博弈,定理:设原博弈G有唯一的纯策略纳什均衡,则对任意整数T,重复博弈 G(T)有唯 一的子博弈完美纳什均衡,即各博弈方每个阶段都采用G的纳什均衡策略。各博弈方在G(T)中的总得益为在G中得益的T倍,平均得益的与原博弈G中的得益。,有限次重复削价竞争博弈,有唯一纯策略纳什均衡(70,70)有限次重复的结果仍然是(低价,低价),4.2.3 有限次重复博弈的民间定理,个体理性得益:不管其它博弈方的行为如何,一博弈方在某个博弈中只要自己采取某种特定的策略,最低限度保证能获得的得益可实现得益:博弈中所有纯策略组合得益的加权平均数组定理:设原博弈的一次性博弈有均衡得益数组优于w,那么在该博弈的多次重复中所有不小于个体理性得益的可实现得益,都至少有一个子博弈完美纳什均衡的极限的平均得益来实现它们,4.3 无限次重复博弈4.3.1 两人零和博弈的无限次重复博弈,两人零和博弈无限次重复的所有阶段都不可能发生合作,博弈方会一直重复原博弈的混合策略纳什均衡,4.3.2唯一纯策略纳什均衡博弈 的无限次重复博弈,两寡头削价竞争博弈 该博弈一次性博弈均衡是都采用低价,是囚徒困境型博弈,无限次重复两寡头削价博弈,触发策略:第一阶段采用H,如果前t-1阶段的结果都是(H,H),则继续采用H,否则采用L。如果博弈方2采用L,总得益现值为 如果博弈方2采用H,总得益现值为 因此当 时,此触发策略纳什均衡策略,两寡头削价竞争无限次重复博弈的民间定理,4.3.3 无限次重复古诺模型,假定:,边际成本都为2。在无限次重复古诺模型中,当贴现率 满足一定条件时,两厂商采用下列触发策略构成一个子博弈完美纳什均衡:在第一阶段生产垄断产量的一半1.5;在第 t 阶段,如果前 t-1 阶段结果都是(1.5,1.5),则继续生产1.5,否则生产古诺产量2。,设厂商1已采用该触发策略,若厂商2也采用该触发策略,则每期得益4.5,无限次重复博弈总得益的现值为:如果厂商2偏离上述触发策略,则他在第一阶段所选产量应为给定厂商1产量为1.5时,自己的最大利润产量,即满足:解得,此时利润为5.0625,高于触发策略第一阶段得益4.5。,但从第二阶段开始,厂商1将报复性地永远采用古诺产量2,这样厂商2也被迫永远采用古诺产量,从此得利润4。因此,无限次重复博弈第一阶段偏离的情况下总得益的现值为:当 上述策略是厂商2对厂商1的同样触发策略的最佳反应,否则偏离是最佳反应。,第六章 完全但不完美信息动态博弈 6.1 不完美信息动态博弈6.1.2 不完美信息动态博弈的表示,多节点信息集扩展形表示,6.1.3 不完美信息动态博弈的子博弈,因为原博弈本身不会成为原博弈的后续阶段,因此子博弈不能从原博弈的第一个节点开始,即原博弈不是自己的子博弈包含所有在初始节点和终点,但不包含不跟在此初始节点之后的节点不分割任何的信息集。,6.2 完美贝叶斯均衡6.2.1 完美贝叶斯均衡定义,在不完美信息动态博弈中纳什均衡和子博弈完美纳什均衡都不能解决问题,需要引进新的均衡概念纳什均衡和子博弈完美纳什均衡分析方法,反应函数和逆推归纳法等同样也要改进、变化,一个策略组合和相应的判断满足下列4个要求,称为一个“完美贝叶斯均衡”:,要求1:在各个信息集,轮到选择的博弈方必须具有一个关于博弈达到该信息集中每个节点可能性的“判断”。对非单节点信息集,一个“判断”就是博弈达到该信息集中各个节点可能性的概率分布,对单节点信息集,则可理解为“判断达到该节点的概率为1”要求2:给定各博弈方的“判断”,他们的策略必须是“序列理性”的。即在各个信息集,给定轮到选择博弈方的判断和其他博弈方的“后续策略”,该博弈方的行为及以后阶段的“后续策略”,必须使自己的得益或期望得益最大。此处所谓“后续策略”即相应的博弈方在所讨论信息集以后的阶段中,针对所有可能情况如何行为的完整计划 要求3:在均衡路径上的信息集处,“判断”由贝叶斯法则和各博弈方的均衡策略决定 要求4:在不处于均衡路径上的信息集处,“判断”由贝叶斯法则和各博弈方在此处可能有的均衡策略决定,6.2.2 均衡要求的初步解释,1、判断的必要性2、序列理性要求实质是利益最大化要求3、判断与策略的一致性:符合策略和BAYES法则(包括均衡路径和非均衡路径上),什么是“均衡路径上的信息集”?,在均衡路径上的信息集:如果博弈按照均衡策略进行,则该信息集会以正的概率达到。不在均衡路径上的信息集:博弈按均衡策略进行时绝对不可能达到,或者达到的概率为0。,1、均衡策略组合:“博弈方1第一阶段L,博弈方2第二阶段U”均衡路径上判断:p=12、均衡策略组合:“博弈方1第一阶段R,博弈方2第二阶段D”不存在与该策略组合一致的不在均衡路径上判断,因此该策略组合不可能构成完美贝叶斯均衡。,6.2.3 关于判断形成的进一步解释,二手车交易为例,车况好差:好车差车各占一半双方策略:好车一定卖,差车有一半概率卖出时选择卖,具体例子:,三方三阶段不完全信息动态博弈,6.3 单一价格二手车模型6.3.1 单一价格二手车交易博弈模型,基本假设:,6.3.2 均衡类型,市场完全失败:市场上所有的卖方,无论商品好坏,都选择不卖市场完全成功:质量好的商品的卖方将商品投放市场,质量差的商品的卖方不敢将商品投放市场市场部分成功:所有的卖方,无论商品好坏,都将商品投放市场,而买方也不管好坏商品都买进市场接近失败:所有好商品的卖方都将商品投放市场,而只有部分“差”商品的卖方将商品投放市场,同时买方以一定的概率随机决定是否买进,合并均衡,混成均衡,6.3.3 模型的纯策略完美贝叶斯均衡,1、市场部分成功的合并均衡卖方选择卖,不管车子好差买方选择买,只要卖方卖买方的判断是条件:差车概率很小 买到差车损失不大 伪装费用较小,2、市场完成成功的分开均衡,卖方在车好时卖,车差时不卖买方选买,只要卖方卖买方的判断为条件:,3、市场完全失败的合并均衡,卖方选择不卖买方选择不买买方的判断为:条件:,6.3.4 模型的混合策略完美贝叶斯均衡,一、条件:,假设:,二、市场接近失败的数字例子:,卖方在车好时选卖,车差时以0.5概率随机选择卖或不卖买方以0.5概率随机选择买或不买买方的判断为,均衡:,市场类型归纳,柠檬原理和逆向选择,允许价格变化消费者支付价格低于期望价值平均(期望)价值以上商品退出,市场上商品质量越来越差消费者愿意支付的价格越来越低 柠檬原理和逆向选择是信息不完全导致的,对市场效率都是不利的。,第七章 不完全信息静态博弈 7.1 静态贝叶斯博弈和贝叶斯的纳什均衡7.1.1 静态贝叶斯博弈的例子,一、暗标拍卖密封递交标书统一时间公正开标标价最高者以所报标价中标中标博弈方的得益不仅取决于标价,还取决于他对拍卖标的物的带有很大主观性的估计每个博弈方的估价通常是自己的私人信息,二、不完全信息的古诺模型,不完全信息表现在:厂商2的成本有两种可能,是厂商2的私人信息,厂商1只知道可能性(概率分布),因此厂商1对厂商2的得益不完全清楚。,不完全信息古诺模型直接分析,7.1.2 静态贝叶斯博弈的一般表示,完全信息静态博弈的一般表达式:静态贝叶斯博弈的一般表达式:,7.1.3 海萨尼转换,海萨尼转换把不完全信息博弈转换成不完美信息动态博弈,7.1.4 贝叶斯纳什均衡,静态贝叶斯博弈策略定义:,贝叶斯纳什均衡定义,贝叶斯纳什均衡:,7.2 暗标拍卖,线性策略均衡,7.5 混合策略和不完全信息,海萨尼1973年结论:完全信息静态博弈中的一个混合策略纳什均衡,几乎总是可以被解释成一个有少量不完全信息的近似博弈的一个纯策略贝叶斯纳什均衡。可理解为,混合策略的根本特征不是博弈方以随机方式选择策略,而是博弈方对其他博弈方的得益不完全确定。,不完全信息夫妻之争,和 都是0,x上标准分布,妻子的临界值策略和得益,丈夫的临界值策略和得益,均衡,x趋向于0时,上述两概率分布趋向于3/4和2/3。与第二章完全信息夫妻之争混合策略纳什均衡的概率分布同。,