欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    雷达信号处理PPT电子教案-第七讲_动目标检测.ppt

    • 资源ID:2240380       资源大小:1.20MB        全文页数:61页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    雷达信号处理PPT电子教案-第七讲_动目标检测.ppt

    第七讲 动目标检测器(MTD),MTD滤波器组示意图,白噪声中的匹配滤波器示意图,色噪声中的最佳接收机结构示意图,第七讲 动目标检测器(MTD),1.MTD的原理,1)有色噪声中最佳接收理论,其中,,白化滤波器,信号匹配滤波器,2)白化滤波器的实现,白化滤波器频率特性应为有色杂波加噪声谱的倒数,在实现上有几种近似方法:A)MTI对地杂波近似白化;B)速度自适应MTI,对运动杂波近似白化;C)MTI+速度自适应 MTI,对地杂波和运动杂波同时实现近似白化;D)最大熵谱估计 AMTI,理想白化。,3)匹配滤波器,目标 fd 从 0fr 均匀分布,所以设置多普勒滤波器组来近似实现匹配滤波;可用 FIR 或 FFT 来实现。,4)频域CFAR和选大,在每一多普勒滤波器通道输出设置CFAR电路;各通道过 CFAR 门限的信号相互比大,取最大值作为 MTD 输出值。,2.成组处理MTDBMTD,一.CPI:,天线扫过一个点目标时在方位上的相继回波数,称为击中数 H。CPI 相参处理间隔是BMTD中组的大小。若一个CPI内的回波数为 m,应保证:,这里,(整数),所以 BMTD 的定义为:将一个 CPI 中的回波结合为一组,来进行 MTD 处理。*波束中的回波应分为至少 2 个CPI,才能保证至少一个CPI中包含了全部目标信息,否则会导致 S/N 下降,降低检测性能。,例:击中数 H32 时,m16(个)。这是最大值,CPI内脉冲数目的选择问题,二.乒乓存储器:,为了实时进行成组处理,必须首先将一个 CPI 中的全部回波数据存储起来,当该 CPI 数据全部存完后(乒存储器存满后),则取出来沿距离间隔顺序处理,与此同时,对下一个 CPI 的回波数据进行存储(存入乓存储器),CPI数据的乒乓存储,乒乓存储器容量:设:CPI=m 距离间隔=n A/D字长 b bits,则:Z=2 m n b 2=4mnb bits,|乒乓,|I,Q,例:CPI=64=m,n=1024,b=12 bits,则:Z=464102412=384 Kbytes,三.多普勒滤波器组:,(1)阶数:多普勒滤波器组阶数为M,则Mm(预白化 MTI 阶数1)例:当 m18,MTI 为3脉冲(3阶)时,则 M18216(阶),(2)多普勒滤波器组的实现方法,1.FFT算法:当 M=2T(T整数)时,可用基 2FFT,并采用加权来减小旁瓣,降低杂波通过旁瓣的泄漏,提高改善因子。一般采用:Hamming 或 Chebyshev 加权效果较好。,加权,FFT,滤波器组的FFT实现,xi,实际雷达CPI中数据的处理流程,FFT运算得到的滤波器组,fr/N,优点:运算量少,设备简单;运算量为:次蝶形运算。实数乘法次数为例:M=16,实数乘法次数为:缺点:每个滤波器形状完全一致,不灵活。,2.FIR算法a)权系数设计:窗函数法 任意窗函数 Remez多重变换算法旁瓣约束等波纹设计法 权系数 hi(n),(i=1,2,M),(n=1,2,M)b)具体算法:,i=1,2,M 这里 和 为复数,,i1,2,M,于是有:,c)FIR 滤波器组运算量,实数乘法次数为:4 M2例:M=16,则 4(16)2=1024(实数乘法)优点:灵活,性能好缺点:运算量大,复杂。,3.MTD 系统的改善因子一.最佳多普勒滤波器组构成的 MTD 系统的改善因子 所谓最佳多普勒滤波器组,即每个滤波器的权函数 Wi 都是最优权函数。这里最优是相对于一定的杂波模型和信号假设而言的。1.CPI 中M个信号回波可用一复矢量表示:Ps为每个信号回波的功率,这里假设天线波瓣形状为矩形,所以每个Ps相等。为信号的随机相位。,是脉冲脉冲间的相移,2.杂波回波是:这里:是杂波功率3.热噪声:这里:为噪声功率4.总输入为:(这里假设 s,c,n 为统计独立的),5.改善因子:输入信干比为:,令某多普勒滤波器有复加权,wi 为某一个滤波器通道的第i个权值则滤波器的输出为:,相应的输出功率为:其中,代表输入回波的协方差矩阵,用 表示(因S,C,n相互统计独立),这里,归一化信号协方差阵归一化杂波协方差阵中的第i,j位置的元素可由杂波相关函数 决定。归一化噪声协方差阵为:,因此具有复加权 的多普勒滤波器的噪声增益为输出信干比为:,则改善因子为:,信号功率增益,输入(杂波噪声)功率,输出(杂波噪声)功率,为信号功率增益对噪声功率增益之比,即为相干积累增益,为归一化的干扰抑制比,即干扰抑制比乘噪声增益。这相当于前面讲过的平均改善因子。,则有:,其中:,可见MTD可以看成白化滤波器(具有平均改善因子IMTI)和相干积累器(多普勒滤波器组)的级联。,白化滤波IMTI,多普勒滤波器组GC,由文献知,最佳 应为:,干扰协方差阵的逆,信号的复共轭,具有最佳加权的MTD就是有色噪声中的最佳检测器。由于 和 都是 的函数,当 在 中均匀分布时,该最佳处理器的平均改善因子为:,例:杂波谱为高斯形 可用数值计算出不同 和 N 时的,23469167.514182532.540,当:时,二.理想白化滤波器级联滤波器组的改善因子,白化滤波器Hw(f),滤波器组,令杂波功率谱为 Sc(f),则理想 Hw(f)应为 Sc(f)的倒谱,或:这里:Sc(f)是杂波功率谱(采样前,f 是从 内扩展的)相当于把杂波功率折叠到 内。,,j 取整数,白化滤波器平均归一化对消比:,(杂波抑制比)(噪声增益),又:令则:,后接滤波器组在理想情况下为一相干积累器(即矩形窗加权,且目标 fd 正好处于某滤波器通带中央),相干积累增益为:所以系统改善因子:例:杂波功率谱 计算列表如下:c T0.070.080.100.120.140.20 CAV(dB)85.261.033.519.411.62.8,而这是系统改善因子上界;当非矩形窗加权时会有 S/N 损失,当 fd 不处于滤波器中央时,应算平均相参积累增益,也会有损失。,三.实际 MTD 系统的改善因子非理想白化非矩形窗加权实际系统为一个 2 脉冲或 3 脉冲 MTI 级联加权滤波器组。令:对消器传递函数和第 i 个滤波器传递函数的合成为:对而言,归一化对消比为:,实际 ISIR 理想 ISIR,(杂波抑制比)(噪声增益),实际MTI加滤波器组的结构形式,则:,由:如已知 和,则可求得相干积累增益为,因此,则:,N 为滤波器数,例:3 脉冲对消 8 脉冲滤波器组,杂波为高斯谱。1.矩形窗加权时0.0060.050.070.080.186.442.638.936.230.12.25dB 旁瓣 Chebyshev 加权0.0060.050.070.080.19351.343.84032.8可见,比理想性能相差较大,Chebyshev 加权副瓣越低,则越高。,4.MTD 的精度和分辨率在 BMTD 中,方位精度由于受到 CPI 宽度限制,因而较低,可用以下几种方法加以改善。因波束内至少有两个CPI,设第一个CPI 报告的方位为,第二个CPI 报告的方位为一.内插法提高方位精度 估计方位这里为内插函数,它取决于与 和 相对应的目标报告的对数幅度1.波束内为单CPI:此时,F=0,,2.波束分裂法(波束内为 2 个CPI时):假设两个CPI 为等同看待(即信号回波在两个 CPI 中均充满时),可令 F=1/2,所以,二.质量中心法可见质量中心法相当于内插法中的 A1和A2 为相应于 和 的线性幅度,三.天线波束形状相关法:K是常数,与天线波瓣形状有关。四.波束匹配法:当波束内的报告数较多时,采用波束形状对每个报告实施加权求中值法。其中,为波束相应于 的形状因子。,各种方法比较:,BMTD 分辨率取决于波束宽度。,5.滑动 MTD SMTD为了提高 MTD 处理的方位精度,可采用滑动MTD。一.原理:在方位上每滑过一个脉冲,做一次 M 点的MTD,新进入一个信号,丢掉一个老信号,又进行一次 M 点 MTD。因此每次 MTD处理中均只有一个新信息,M1 个老信息。SMTD处理中,可获得与天线波束内的击中数相等的报告数,从而可采用质心法等方法来提高 MTD 的方位精度。SMTD最大的难点是运算量相对于BMTD增加了M倍。所以必须寻求减少运算量的新方法。,滑动SMTD的示意图,传统单滑动处理的 MTD 结构,图中,N 为窗长(也是滤波器组的个数),每滑进、滑出一个脉冲要完成 N 个滤波器运算,N 次恒虚警处理,和 N 个通道的门限比较以及选大输出,运算量庞大。,这种处理有两个冗余度:1)每一步处理 N 个滤波器中有 N1 个滤波器结果并不输出,即只有目标通道输出。但目标多普勒频率在一次扫描波束范围内是不会发生太大变化的。可认为所处理的滤波器通道不变。由此可得出在整个波束范围内只作一次目标通道判决。每判一次后,可作多次滑动处理,且每次滑动处理只处理目标所在的多普勒滤波通道即可。从而可以大大节省运算量。2)相邻两次处理的 N 个数据中,有 N1 个数据完全相同。所以相邻两次 FFT 处理之间可导出一种滑动递推算法,提高滑动 FFT 处理的效率。,二.成组判断和滑动处理相结合的 SMTD 1)成组判断:在波束范围内仅做一次目标通道判决 2)滑动处理:仅对有目标的通道进行单滤波器的滑动处理 因此,新的结构如下图所示:,在波束范围内,由于仅做一次目标通道判决,所以只做一次FFT(或滤波器组),一次 N 通道恒虚警,和一次 N 选 1判断即可。如成组判断后,判目标通道为 K0;则在整个波束范围内的滑动处理时,每次滑动后仅作 K0 通道的滤波、恒虚警即可,从而大大节省了运算量。此外各相邻两次单滑动处理间有极强的相关性(因有 N1 个数据相同),所以前次滤波的某些结果可直接送入下次滤波处理中,进一步减少了单滤波器处理的运算量。,成组判断和滑动处理相结合的实现方框图:,三.滑动处理的快速递推算法 令用 N 点 DFT 完成窄带滤波器,目标处于 K 通道,连续 N 个输出可表示为:,(1),(2),(3),(4),N 为相干点数,;,由(2)式乘以 再减去(1)式得:,同样,由(3)式乘以 再减去(2)式得:,依此类推,有:,上式可写成一般表达式:,m=1,2,N-1(5),由于后续均值估计和恒虚警处理只关心信号模值,可丢弃信号相位分量。令:故有:可见,仅对模值而言,得到 和 是等效的(相同)。由(5),(6)两式可得到单滑动 DFT 的快速递推算法的一般表达式(仅求 即可),(6),(7),由(7)式知,其滤波运算,每滑动一次只需一次复乘,两次复加即可。,所以其流程应为:Step 1:初始化(因求 和求 等效)Step 2:循环,for m=1 to N-1,流程图:,M为成组判断组长(可等于波束内击中数),运算量:初始化:N 次复乘,N 次复加,滑动(M-1)次:(M-1)次复乘,2(M-1)次复加共有:复乘(N+M-1)次,复加 N+2(M-1)次如 M=N,则计算量为(2N-1)次复乘和(3N-2)次复加。而标准 FFT,每输出一个结果要 次复乘,和次复加。可见当 N16时,滑动处理输出 N 个结果的运算量,比传统方法输出一个结果的运算量还少,效率提高 N 倍以上。再加上恒虚警和判大等运算量的大量减少,所以使“成组判断,滑动处理”的总运算量急剧下降。SMTD的实现成为可能!,

    注意事项

    本文(雷达信号处理PPT电子教案-第七讲_动目标检测.ppt)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开