人教版初中数学九级下册课件:用函数的观点看一元二次方程308.ppt
用函数的观点看一元二次方程,与x轴有两个不同的交点(x1,0)(x2,0),有两个不同的解x=x1,x=x2,b2-4ac0,与x轴有唯一个交点,有两个相等的解x1=x2=,b2-4ac=0,与x轴没有交点,没有实数根,b2-4ac0,练习:,1、已知二次函数y=x2+x-2与x轴的交点个数为2、已知二次函数y=x2-6x+k(1)若与x轴的交点只有一个,则k的值为(2)若与x轴的交点没有交点,则k的取值范围,(4)一元二次方程 m x2+x-10=0的两个根是x1=-2,x2=5,那么二次函数 y=3 x2+x-10与x轴的交点坐标是.,一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0),我的地盘看我的,(5)根据下列表格的对应值:判断方程ax2+bx+c=0(a0,a,b,c为常数)一个解x的范围是()A 3 X 3.23 B 3.23 X 3.24C 3.24 X 3.25 D 3.25 X 3.26,C,5、已知二次函数y=x2-mx-m2求证:对于任意实数m,该二次函数的图像与x轴总有公共点;,亮出你的风采,?,练习:,1、抛物线y=x2-x+m与x轴有两个交点,则m的取值范围是。,2、如果关于x的方程x2-2x+m=0有两个相等的实数根,此时抛物线y=x2-2x+m与x轴有 个交点。,3、抛物线y=x2-kx+k-2与x轴交点个数为()A、0个 B、1个 C、2个 D、无法确定,亮出你的风采,?,5、已知二次函数y=x2-mx-m2(1)求证:对于任意实数m,该二次函数的图像与x轴总有公共点;(2)该二次函数的图像与x轴有两个公共点A、B,且A点坐标为(1、0),求B点坐标。,二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点,二次函数与一元二次方程,b2 4ac 0,b2 4ac=0,b2 4ac 0,若抛物线y=ax2+bx+c与x轴有交点,则,b2 4ac,0,小结:,0,=0,0,O,X,Y,二次函数y=ax2+bx+c的图象和x轴交点,已知二次函数y=-x2+2x+k+2与x轴的公共点有两个,(1)求k的取值范围;(2)当k=1时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;(3)观察图象,当x取何值时,y=0,y0,y0?(4)在x轴下方的抛物线上是否存在点P,使SABP是SABC的一半,若存在,求出P点的坐标,若不存在,请说明理由.,?,作业,再见,