欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    231直线与平面垂直的判定.ppt

    • 资源ID:2200398       资源大小:1.61MB        全文页数:40页
    • 资源格式: PPT        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    231直线与平面垂直的判定.ppt

    2.3.1 直线与平面垂直的判定,高中数学必修2,教学目的,1.理解直线与平面垂直的定义;2.掌握直线与平面垂直的判定定理内容及其应用;3.应用直线与平面垂直的判定定理解决问题.教学重点:直线与平面垂直的判定定理内容及其应用.教学难点:直线与平面垂直的判定定理内容及论证过程,直线和平面垂直的判定(1),复习引入:,1.直线和平面的位置关系是什么?,(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点),2.线面平行的判定定理的内容是什么?,3.线面平行的性质定理的内容是什么?,平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。,引入新课:,在直线和平面相交的位置关系中,有一种相交是很特殊的,我们把它叫做垂直相交,这节课我们重点来探究这种形式的相交。,直线与平面垂直,观察实例,发现新知,旗杆与地面的关系,给人以直线与平面垂直的形象。,观察实例,发现新知,房屋的屋柱与地面的关系,给人以直线与平面垂直的形象。,大桥的桥柱与水面的位置关系,给人以直线与平面垂直的形象。,观察实例,发现新知,实例研探,定义新知:,探究:什么叫做直线和平面垂直呢?当直线与平面垂直时,此直线与平面内的所有直线的关系又怎样呢?,生活中线面垂直的实例:,在阳光下观察直立于地面的旗杆及它在地面的影子,随着时间的变化,尽管影子的位置在移动,但是旗杆所在的直线始终与影子所在的直线垂直(如图),事实上,旗杆AB所在直线与地面内任意一条不过点B的直线也是垂直的。,直线与平面垂直的定义:,如果一条直线l 和一个平面内的任意一条直线都垂直,我们就说直线l 和平面互相垂直.记作:l,l,P,l 叫做的垂线,叫做l 的垂面,l 与的唯一公共点P叫做垂足。,画直线与平面平行时,通常把直线画成与表示平面的平行四边形的一边垂直。,“任何”表示所有(提问:若直线与平面内的无数条直线垂直,则直线垂直与平面吗?如不是,直线与平面的位置关系如何?)直线与平面垂直是直线与平面相交的一种特殊情况,在垂直时,直线与平面的交点叫做垂足.a等价于对任意的直线m,都有am.,三点说明:,利用定义,我们得到了判定线面垂直的最基本方法,同时也得到了线面垂直的最基本的性质.,探究:,提出问题:有没有比较方便可行的方法来判断直线和平面垂直呢?,师生活动:请同学们准备一块三角形的纸片,我们一起来做如图所示的试验:过ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问:折痕AD与桌面垂直吗?如何翻折才能保证折痕AD与桌面所在平面垂直?,A,直线与平面垂直的判定定理:,一条直线和一个平面内的两条相交直线都垂直,则这条直线垂直于这个平面.,线线垂直 线面垂直,例题示范,巩固新知,例1、一旗杆高8m,在它的顶点处系两条长10m的绳子,拉紧绳子并把它们的下端固定在地面上的两点(与旗杆脚不在同一条直线上)。如果这两点与旗杆脚距6m,那么旗杆就与地面垂直,为什么?,解:如图,旗杆PO8,两绳子长PAPB10,OAOB6,A,O,B三点不共线,因此A,O,B三点确定平面,因为PO2AO2PA2,PO2BO2PB2,故POOA,POOB又OAOBO,故OP,因此旗杆与地面垂直。,例2、如图,已知ab,a。求证:b。,例题示范,巩固新知,分析:在平面内作两条相交直线,由直线与平面垂直的定义可知,直线a与这两条相交直线是垂直的,又由b平行a,可证b与这两条相交直线也垂直,从而可证直线与平面垂直。,a,b,阅读P66证明过程.,(此定理可看作线面垂直的判定定理二;直接用),巩固练习,1.平行四边形ABCD所在平面a外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、AD.,归纳:,今天这节课,我们学习了直线和平面垂直的定义,这个定义最初用在判定定理的证明上,但用得较多的则是,如果直线l垂直于平面a,那么l就垂直于a内的任何一条直线;对于判定定理,判定线、面垂直,实质是转化成线、线垂直,从中不难发现立体几何问题解决的一般思路。,作业布置:P66探究;P67练习第1题;课下思考:P74 B组2题。,继续!,直线和平面垂直的判定(2),复习引入:,1直线与平面垂直的定义,如果直线l与平面的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作l.,2直线与平面垂直的判定定理,一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。,取AC中点O,引课:,我们知道,当直线和平面垂直时,该直线叫做平面的垂线。如果直线和平面不垂直,是不是也该给它取个名字呢?此时又该如何刻画直线和平面的这种关系呢?,直线与平面所成的角,1.平面的斜线,如图,若一条直线PA和一个平面相交,但不垂直,那么这条直线就叫做这个平面的斜线,斜线和平面的交点A叫做斜足。,P,A,斜足,斜线,2.直线和平面所成的角,如图,过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。,斜线,斜足,射影,垂足,垂线,一条直线垂直于平面,我们说它所成的角是直角;一条直线和平面平行,或在平面内,我们说它所成的角是00的角。,规定:,想一想:直线与平面所成的角的取值范围是什么?,例1、如图,正方体ABCD-A1B1C1D1中,求(1)直线A1B和平面BCC1B1所成的角。(2)直线A1B和平面A1B1CD所成的角。,O,例题示范,巩固新知,分析:找出直线A1B在平面BCC1B1和平面A1B1CD内的射影,就可以求出A1B和平面BCC1B1和平面A1B1CD所成的角。,阅读教科书P66上的解答过程。,巩固练习,1.判断下列说法是否正确,(1)两条平行直线在同一平面内的射影 一定是平行直线(),(2)两条相交直线在同一平面内的射影 一定是相交直线(),(3)两条异面直线在同一平面内的射影 要么是平行直线,要么是相交直线(),(4)若斜线段长相等,则它们在平面内 的射影长也相等(),注:(3)也可能是一直线与一点。,2.如图:正方体ABCD-A1B1C1D1中,求:(1)AB1在面BB1D1D中的射影(2)AB1在面A1B1CD中的射影(3)AB1在面CDD1C1中的射影,A,D,C,B,巩固练习:,2.如图:正方体ABCD-A1B1C1D1中,求:(1)AB1在面BB1D1D中的射影(2)AB1在面A1B1CD中的射影(3)AB1在面CDD1C1中的射影,A1,D1,C1,B1,A,D,C,B,巩固练习:,2.如图:正方体ABCD-A1B1C1D1中,求:(1)AB1在面BB1D1D中的射影(2)AB1在面A1B1CD中的射影(3)AB1在面CDD1C1中的射影,A,D,C,B,巩固练习,2.如图:正方体ABCD-A1B1C1D1中,求:(1)AB1在面BB1D1D中的射影(2)AB1在面A1B1CD中的射影(3)AB1在面CDD1C1中的射影,A,D,C,B,巩固练习,3.如图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角(4)A1C1与面ABC1D1所成的角,A,D,C,B,0o,巩固练习:,3.如图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角(4)A1C1与面ABC1D1所成的角,A,D,C,B,90o,巩固练习,3.如图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角(4)A1C1与面ABC1D1所成的角,A,D,C,B,45o,巩固练习,3.如图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角(4)A1C1与面ABC1D1所成的角,A,D,C,B,30o,巩固练习,提高:课本,P,A,B,C,1外心;2中点;3垂心,例2:已知:b,c,bc=E,=a,c,b。求证:a。,结论:,证明:b,=a,ba;c,=a,ca;bc=E,b,c,a。,结论:,例3:已知正方体中,AC是面对角线,BD是与AC 异面的体对角线。求证:ACBD,注:结论!,证明:连接BD 正方体ABCD-ABCD DD正方体ABCD DD AC AC、BD 为对角线 ACBD DDBD=D ACDDB(即面DDB)ACBD,归纳小结:,1直线与平面垂直的概念:,(1)利用定义;,(2)利用判定定理,3数学思想方法:转化的思想,3直线与平面垂直的判定,垂直于平面内任意一条直线,2.线面角的概念及范围,直线与平面垂直,转化思想:线面垂直 线线垂直,作业布置:P74A组8;9题,课下思考:B组题,不去奋斗,不去创造,再美的青春也结不出硕果。,

    注意事项

    本文(231直线与平面垂直的判定.ppt)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开