欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学:3.1《回归分析的基本思想及其初步应用》课件.ppt

    • 资源ID:2157231       资源大小:564KB        全文页数:23页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学:3.1《回归分析的基本思想及其初步应用》课件.ppt

    新课标人教版课件系列,高中数学选修2-3,3.1回归分析的基本思想及其初步应用,教学目标,通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.,比数学3中“回归”增加的内容,数学统计画散点图了解最小二乘法的思想求回归直线方程ybxa用回归直线方程解决应用问题,选修2-3统计案例引入线性回归模型ybxae了解模型中随机误差项e产生的原因了解相关指数 R2 和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果,复习回顾,2、数据点和它在回归直线上相应位置的差异 是随机误差的效应,称 为残差。,3、对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号表示为:称为残差平方和,它代表了随机误差的效应。,4、两个指标:(1)类比样本方差估计总体方差的思想,可以用作 为 的估计量,越小,预报精度越高。,(2)我们可以用相关指数R2来刻画回归的效果,其 计算公式是:,R2 1,说明回归方程拟合的越好;R20,说明回归方程拟合的越差。,在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。,5、残差分析与残差图的定义:,然后,我们可以通过残差 来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。,我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。,案例2 一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:,(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵数目。(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?,非线性回归问题,假设线性回归方程为:=bx+a,选 模 型,由计算器得:线性回归方程为y=19.87x-463.73 相关指数R2=r20.8642=0.7464,估计参数,解:选取气温为解释变量x,产卵数 为预报变量y。,所以,二次函数模型中温度解释了74.64%的产卵数变化。,探索新知,方案1,分析和预测,当x=28时,y=19.8728-463.73 93,一元线性模型,奇怪?,9366?模型不好?,方案2,问题3,合作探究,t=x2,二次函数模型,方案2解答,平方变换:令t=x2,产卵数y和温度x之间二次函数模型y=bx2+a就转化为产卵数y和温度的平方t之间线性回归模型y=bt+a,作散点图,并由计算器得:y和t之间的线性回归方程为y=0.367t-202.543,相关指数R2=0.802,将t=x2代入线性回归方程得:y=0.367x2-202.543当x=28时,y=0.367282-202.5485,且R2=0.802,所以,二次函数模型中温度解释了80.2%的产卵数变化。,产卵数,气温,指数函数模型,方案3,合作探究,对数,方案3解答,当x=28oC 时,y 44,指数回归模型中温度解释了98.5%的产卵数的变化,由计算器得:z关于x的线性回归方程为,对数变换:在 中两边取常用对数得,令,则 就转换为z=bx+a.,相关指数R2=0.98,最好的模型是哪个?,线性模型,二次函数模型,指数函数模型,比一比,最好的模型是哪个?,回归分析(二),则回归方程的残差计算公式分别为:,由计算可得:,因此模型(1)的拟合效果远远优于模型(2)。,总 结,对于给定的样本点两个含有未知参数的模型:,其中a和b都是未知参数。拟合效果比较的步骤为:(1)分别建立对应于两个模型的回归方程与 其中 和 分别是参数a和b的估计值;(2)分别计算两个回归方程的残差平方和与(3)若 则 的效果比 的好;反之,的效果不如 的好。,练习:为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:,(1)用天数作解释变量,繁殖个数作预报变量,作出这些 数据的散点图;(2)描述解释变量与预报变量 之间的关系;(3)计算残差、相关指数R2.,解:(1)散点图如右所示,(2)由散点图看出样本点分布在一条指数函数y=的周围,于是令Z=lny,则,由计数器算得 则有,(3),即解释变量天数对预报变量繁殖细菌得个数解释了99.99%.,练习 假设关于某设备的使用年限x和所支出的维修费用 y(万元),有如下的统计资料。,若由资料知,y对x呈线性相关关系。试求:(1)线性回归方程 的回归系数;(2)求残差平方和;(3)求相关系数;(4)估计使用年限为10年时,维修费用是多少?,解:,(1)由已知数据制成表格。,所以有,再见,

    注意事项

    本文(数学:3.1《回归分析的基本思想及其初步应用》课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开