第五章水泥混凝土ppt课件.ppt
第 五 章水 泥 混 凝 土,5.1 概述,由胶凝材料、骨料(粗骨料和细骨料)按适当比例配合,拌和制成的混合物,经过一定时间硬化而形成的人造石材,统称之为混凝土。工程上使用最多的是水泥混凝土。,5.1.1 混凝土的分类,(一)按抗压强度分类普通混凝土(C10C60)、高强混凝土(C60C100)、超高强混凝土(C100)。,(二)按表观密度大小分类(1)重混凝土:0 2600kg/m3,采用重晶石、铁矿石、钢屑等重骨料和钡水泥、锶水泥等重水泥配制而成。适用于国防核能工程的屏蔽结构,防射线、防辐射。,(2)普通混凝土:0=21002500kg/m3,用普通天然砂石为骨料配制而成的,建筑工程中常用的混凝土,适用建筑物的各种承重构件。(3)轻混凝土:0 1950kg/m3,采用陶粒等轻质多孔的骨料,或用发泡剂、加气剂形成多孔结构的混凝土。,(三)按胶凝材料分类水泥混凝土、沥青混凝土、石膏混凝土、水玻璃混凝土、聚合物混凝土。(四)按用途分类结构混凝土、防水混凝土、道路混凝土、防辐射混凝土、耐热混凝土、耐酸混凝土、大体积混凝土、膨胀混凝土。,5.1.2 混凝土的特点,(1)混凝土用料中80%以上的砂石可就地取材,成本低;(2)凝结前具有良好的可塑性,可以按工程结构的要求,浇筑成各种形状的任意尺寸的整体结构或预制构件;,(3)硬化后有较高抗压强度和良好的耐久性;(4)混凝土与钢筋有牢固的粘结力,复合成钢筋混凝土,加大了混凝土的应用范围;(5)可利用工业废料调制成不同性能的混凝土,有利于环境保护;,(6)抗拉强度低;(7)硬化速度慢,生产周期长;(8)强度波动因素多。在混凝土内掺入纤维或聚合物,可大大降低混凝土的脆性;混凝十采用快硬水泥或掺入早 强剂、减水剂等,可明显缩短其硬化周期。严格质量控制,5.1.3 混凝土的组成及各组成的作用,混凝土由水泥、水、砂及石子四种基本材料组成。为节约水泥或改善混凝土的某些性能,常掺入外加剂和掺合料。外加剂和掺合料逐渐成为混凝土中必不可少的第五种成分。,水泥和水构成水泥浆,砂和石子为混凝土的骨料,砂为细骨料,石子为粗骨料,水泥浆和砂构成砂浆。水泥浆的作用:(1)填充砂的孔隙,并包裹砂粒;(2)拌制时在砂、石子之间起润滑作用,便于施工;(3)填充石子的空隙并包裹石子;(4)水泥浆硬化后形成水泥石,将砂、石胶结成一个整体。,骨料的作用:(1)形成混凝土的骨架;(2)对水泥石的体积变形起一定的抑制作用。,5.1.5 对混凝土的基本要求,(1)具有与施工条件相适应的施工和易性;(2)具有符合设计要求的强度;(3)具有与工程环境相适应的耐久性;(4)材料配比的经济合理性。,5.2 普通混凝土的基本组成材料,混凝土是一个宏观匀质,微观非匀质的堆聚结构。水泥浆包裹砂粒,填充砂粒间的空隙形成水泥砂浆,水泥砂浆包裹石子并填充石子间的空隙而形成混凝土。,5.2.1 水泥(一)水泥品种的选择,一般采用硅酸盐水泥、普通硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥。,(二)水泥标号的选择,根据混凝土设计强度等级选择,混凝土强度等级高,水泥标号也高。水泥标号=(1.52)混凝土强度等级高强混凝土:水泥标号=(0.91.5)混凝土强度等级。,5.2.2 细骨料(砂),细骨料是粒径为0.154.75mm的骨料。细骨料有天然砂(河砂、海砂、山谷砂等)和人工砂,其中以河砂的质量最好。,(一)颗粒形状及表面特征,1、山谷砂和人工砂的颗粒多棱角,表面粗糙,与水泥粘结较好,混凝土强度较高,但拌和物的流动性较差。2、河砂和海砂的颗粒少棱角,表面光滑,与水泥粘结较差,混凝土强度较低,但拌和物的流动性较好,(二)细骨料的有害杂质,有害杂质:云母、粘土、淤泥、有机物、化合物、轻物质等。民用建筑用砂符合普通混凝土用砂质量标准及检验方法;水工混凝土用砂符合水工混凝土施工规范;水运工程混凝土用砂符合水运工程混凝土施工规范。,(三)砂的粗细程度与颗粒级配,1、砂的粗细程度砂的粗细程度是反映不同粒径的砂粒,混合后的总体粗细程度。细度模数Mx是指不同粒径的砂粒混在一起后的平均粗细程度,用来表示砂的粗细程度。,A1、A2、A3、A4、A5、A6分别为用4.75mm、2.36mm、1.18mm、0.600mm、0.300mm、0.150mm各筛上累计筛余百分率,粗砂Mx=3.73.1中砂Mx=3.02.3细砂Mx=2.21.6特细砂Mx=1.50.7拌制混凝土以中砂为宜,2、砂的颗粒级配砂的颗粒级配指砂不同大小颗粒的搭配情况。,(四)砂的物理性质,1、砂的堆积密度及空隙率(2)砂的堆积密度:自然状态:=14001600kg/m3 密实堆积:=16001700kg/m3(3)空隙率 天然河砂的空隙率为40%45%级配良好河砂的空隙率40%,2、砂的含水状态(1)含水状态 干燥状态:在不超过110的温度下烘干至恒重,砂含水率为零。气干状态:砂含水率与大气湿度相互平衡时的状态。,饱和面干状态:砂子表面干燥而内部孔隙含水达到饱和时的状态。饱和面干砂既不从混凝土拌合物中吸取水分,也不放出水分,配制混凝土较好。湿润状态:砂子不仅内部孔隙含水饱和,而且表面也吸附一层自由水。,干燥状态,气干状态,饱和面干状态,湿润状态,砂的含水状态,3、砂的坚固性砂的坚固性是指砂在气候、环境变化或其它物理因素作用下抵抗破裂的能力。,5.2.3 粗骨料,粗骨料是粒径4.75mm的骨料。常用的粗骨料有卵石和碎石。(一)颗粒形状及表面特征较理想的颗粒形状:三维长度相等,相近的球形或立方体颗粒。较差的颗粒形状:三维长度相差较大的针、片状颗粒。,1、碎石表面粗糙,与水泥石的粘结能力强,混凝土强度高,但和易性差。2、卵石表面光滑,棱角少,与水泥石的粘结能力差,但和易性好。3、针状、片状的颗粒使空隙率增大,易被折断,应限量。,(二)有害杂质,有害杂质:粘土、淤泥、细屑、有机物、硫化物、硫酸盐等。民用建筑应符合普通混凝土用碎石或卵石质量标准为检验办法;水工混凝土应符合水工混凝土施工规范;水运工程混凝土用砂符合水运工程混凝土施工规范,(三)最大粒径及颗粒级配,1、最大粒径(DM)(1)定义 DM是粗骨料公称粒径级的上限值。DM愈大,骨料的空隙及表面积愈小,水泥用量愈小,混凝土愈密实,水化热愈小,收缩愈小。,(2)混凝土最大粒径选择的影响因素 强度 当DM 40,DM,低强度的混凝土强度上升,高强度的混凝土强度反而降低。大体积的混凝土结构:DM=80150mm,普通混凝土:DM=2040mm。,2、颗粒级配(1)混凝土级配确定方法连续级配:由最大粒径开始,由大到小各粒径相连,每一粒径级占适当比例。间断级配:抽去中间一、二级石子,粒径不相连,易产生离析,增加施工难度。,(2)超、逊径石子的允许含量超径:某一级石子中混杂有超过这一级粒径的石子。超径石子含量不大于5%逊径:某一级石子中混杂有小于这一级粒径的石子。逊径石子含量不大于10%。,(三)物理力学性质,1、堆积密度及空隙率球形或立方体形状的颗粒且级配良好的粗骨料堆积密度较大,空隙较小。2、吸水率粗骨料的吸水率2.5%,3、强度粗骨料的强度可用岩石立方体强度或压碎指标两种方法进行检验。(1)极限抗压强度/混凝土强度不小于1.5,且极限抗压强度:岩浆岩不小于80MPa,变质岩不小于60MPa,沉积岩不小于30MPa。,(2)压碎指标将一定质量气干状态下粒径1020mm的石子装入标准圆筒内,放在压力机上,在35min内均匀加载达200KN,其压碎的细粒(小于2.5mm)占试样重量的百分率为压碎指标。,4、坚固性有抗冻、耐磨、抗冲击性能要求的混凝土所用粗骨料,要求测定其坚固性。对严寒及寒冷地区室外且处于干湿变换的混凝土,粗骨料经五次循环的质量损失应不大于8%。其它条件下的混凝土骨料经五次循环后的质量损失应不大于12%。,5.2.4 混凝土拌和及养护用水,凡可饮用的水均可拌制和养护混凝土,不可用海水、未经处理的工废水、污水及沼泽水。缺乏淡水时,可用海水拌制素混凝土,钢筋混凝土和预应力钢筋混凝土不能用海水拌制对钢筋混凝土。,5.3 新拌混凝土的和易性,混凝土的各组成材料按一定比例配合、拌制成的尚未凝结硬化的混合物,称为新拌混凝土或混凝土拌合物,和易性是混凝土拌合物的施工操作(拌合、运输、浇灌、捣实)的难易程度和抵抗离析作用程度并能获得质量均匀,密实混凝土的性能。和易性包含流动性、粘聚性、保水性。,2、和易性的含义(1)流动性,流动性是混凝土拌和物在自重或施工振捣的作用下,产生流动,并均匀、密实地填满模型的性能。流动性反映拌和物的稀稠,关系着施工振捣的难易和浇筑的质量。,(2)粘聚性(抗离析性),粘聚性是混凝土拌合物在施工过程中互相之间有一定粘聚力,不发生分层、离析、泌水,保持整体均匀的性能。,(3)保水性,保水性是混凝土拌合物保持水分不易析出的能力。混凝土拌合物中的水,一部分是保证水泥水化所需水量,另一部分是为使混凝土拌合物具有足够流动性,便于浇捣所需的水量。,3、和易性的测定,(1)坍落度一般常用坍落度来表示常态混凝土流动性的大小。粘聚性及保水性常根据经验,通过试验或施工现场的观察定性地评定其优劣。,2)和易性的评定:流动性:坍落度,坍落度10mm40mm的常称为低塑性混凝土;50mm90mm称为塑性混凝土;100mm150mm称为流动性混凝土;大于160mm称为大流动性混凝土;坍落度小于10mm的称为干硬性混凝土。,粘聚性:在坍落的拌合物锥体一侧轻打,若逐渐下沉,表示粘聚性好,如果锥体突然倒塌,部分崩裂,或石子离析则表示粘聚性不好。,保水性:若提起坍落筒后,有较多稀浆从底部析出,拌合物锥体因失浆而骨料外露,表示保水性不好。若提起坍落筒后,无稀浆析出或仅有少量稀浆自底部析出,混凝土锥体含浆饱满,表示混凝土拌合物保水性良好。,(5)维勃稠度(VB)干硬性混凝土拌合物,采用维勃稠度作为和易性指标。维勃稠度:混凝土拌和物装入坍落筒内,提出坍落筒后,将透明圆盘置于顶面,启动振动台,圆盘底面完全为水泥浆布满所经历的时间。,维勃稠度(VB)为10s5s,属半干硬性混凝土;20s11s,属干硬性混凝土;30s21s,属特干硬性混凝土;31s,属超干硬性混凝土。,三、坍落度指标的选择,4、影响混凝土拌合物和易性的因素(1)水灰比的影响,水灰比是水与水泥的比值 W/C过小,水泥浆干稠,流动性过低,施工困难;W/C过大,使混凝土拌合物的粘聚性和保水性不良,产生流浆、离析,影响强度。,(2)单位用水量的影响,水泥浆与骨料间的比例关系,常用单位用水量衡量,即单位体积混凝土的用水量。水灰比不变时,用水量越多,水泥浆愈多,流动性愈大。但水泥浆过多,将出现流浆现象,使粘聚性变差,影响强度和耐久性;过少,则不能填满骨料空隙或不能很好包裹骨料表面,产生崩坍现象,粘聚性变差。,混凝土的用水量(kg/m3),(3)含砂率的影响,砂率是指砂的质量占砂、石总质量的百分数。砂率反映新拌混凝土中砂子与石子的相对含量。由于砂子的粒径远小于石子,砂率的变动会使骨料的空隙率和总表面积有显著改变,因而对和易性产生较大影响。,砂率过小,不能形成砂浆润滑层,流动性差,影响粘聚性、保水性。砂率过大,骨料孔隙率及总表面积大,当水灰比及水泥用量一定时,使拌合物干稠,流动性低;当流动性一定时,使水泥用量显著增大。,合理砂率是指在水灰比及水泥用量一定的条件下,使新拌混凝土保持良好的粘聚性和保水性并获得最大流动性的砂率值。,也可以是指新拌混凝土获得要求的流动性,具有良好的粘聚性及保水性时,而水泥用量最省时的砂率。,砂率参考表,(4)水泥品种和骨料的性质,使用矿渣水泥时,保水性较差,使用火山灰水泥时,粘聚性较好,但流动性较小。卵石拌制的拌合物比碎石拌制的流动性好,河砂拌制的拌合物比山砂拌制的流动性好。骨料级配好的混凝土拌合物的流动性也好。,(5)时间和温度,拌合物拌制后,随时间的延长而逐渐变得干稠,流动性减小。环境温度的升高,水分蒸发及水泥水化反应加快,拌合物的流动性变差,坍落损失也变快。,5、改善和易性的措施,(1)水灰比一定时,适当增加水泥浆量(2)适宜的水泥品种及掺合料(3)级配良好的骨料,尽量采用较粗的砂、石(4)采用合理砂率,5.3.2 混凝土拌合物的凝结时间,混凝土拌合物的凝结时间与所采用的水泥的凝结时间并不相等。水泥品种,环境温度、湿度、掺和料、外加剂、水泥的水化反应是影响混凝土凝结时间的主要因素。,(1)在环境的温度、湿度条件相同且掺合料、外加剂也相同的条件,混凝土所用水泥的凝结时间长,则混凝土拌合物凝结时间也相应较长,(2)混凝土的水灰比越大,拌和物的凝结时间越长。(3)掺粉煤灰、缓凝剂,凝结时间增长。(4)混凝土所处环境温度高,拌和物凝结时间缩短。,新拌混凝土的凝结时间分为初凝和终凝时间。初凝时间表示施工时间的极限,终凝时间表示混凝土力学强度开始快速发展。因此,混凝土的初凝时间直接限制了新拌混凝土从机口出料到浇筑完毕的时间。新拌混凝土必须在初凝前浇筑完毕。,5.4 混凝土的强度,强度是新拌混凝土硬化后的重要力学性质,也是混凝土质量控制的主要指标。混凝土的强度包括抗压强度、抗拉强度、抗弯强度、抗剪强度等,其中抗压强度最大,混凝土也主要用于承受压力。,(一)混凝土受压破坏过程,(二)荷载作用下的变形1、受压应力应变关系,阶段:0.3破坏荷载,荷载与变形曲线近于直线,混凝土的变形主要是弹性变形,混凝土内的微裂缝和界面裂缝无明显变化。,阶段:荷载继续增加至(0.70.9)破坏荷载。此阶段水泥石内微裂缝和界面裂缝的数量、长度及宽度不断增大,变形速度大于荷载的增加速度,荷载与变形之间不再是线性关系。,阶段:荷载继续增加达到破坏荷载,混凝土内出现不稳定裂缝扩展,混凝土表面出现可见裂缝,变形速度进一步加快。阶段:应力达到破坏荷载后,裂缝发展为贯通裂缝,承载力下降,变形继续增加,直到破坏。,(二)抗压强度与强度等级,抗压强度用试件破坏时单位面积(m2)上所能承受的压力(N)表示,单位为Pa、KPa、MPa。根据试件形状的不同,混凝土抗压强度分为立方体抗压强度和轴心抗压强度(长方体)。,(1)立方体抗压强度(fcc)标准立方体(边长150mm)试件在标准养护条件(202,相对湿度95%以上)下,养护到28d龄期,测得每组三个试件的极限抗压强度平均值为混凝土标准立方体抗压强度。,当采用非标准尺寸的试件,应将测定结果乘以换算系数,换算成标准值。采用100mm、200mm、300mm、450mm的立方体试件时,换算系数分别为0.95,1.05、1.15、1.36。,(2)混凝土的强度等级根据混凝土立方体抗压强度标准值(95%的强度保证率),将混凝土划为12个强度等级:C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60。C25表示立方体抗压强度标准值为25MPa。,三、混凝土的轴心抗压强度(fc)混凝土结构形式大部分是棱柱体型或圆柱体型,为了使测得的混凝土强度接近于混凝土结构的实际情况,在混凝土结构计算中都是采用混凝土的轴心抗压强度作为依据。,我国国家规范规定,采用150mm150mm300mm的棱柱体标准试件,用标准试验方法测得的抗压强度称为混凝土轴心抗压强度,又称为混凝土棱柱体抗压强度,以表示。,用棱柱体标准试件测定的轴心抗压强比同截面的立方体抗压强度小。当立方体抗压强度在1050MPa时,轴心抗压强约为立方体抗压强度的0.700.80 倍。我国规范规定混凝土轴心抗压强度标准值常取其等于0.67倍的立方体抗压强度标准值。,(四)混凝土的抗拉强度(ft),混凝土的抗拉强度很低,一般约为抗压强度的7%14%,且随着混凝土强度的提高,拉、压强度比值逐渐减小。,抗拉强度与抗压强度的关系:,(五)影响混凝土强度的因素,混凝土的破坏型式:骨料和水泥石分界面上的破坏;水泥石强度低,水泥石本身破坏;骨料的破坏(可能性很小)混凝土强度取决于:水泥石强度、水泥石与骨料表面的粘结强度,影响混凝土强度的因素:水泥强度与水灰比 骨料种类及级配 养护条件与龄期施工因素,1、水泥强度与水灰比,水泥标号:水灰比一定时,水泥标号愈高,水泥石强度愈高,混凝土强度也愈高 水灰比:水泥标号相同时,水灰比越小,水泥石强度愈高,与骨料粘结力愈大,混凝土强度就愈高,混凝土强度fcu的经验计算公式 fcu=A fce(C/W B)fce=c fce,kA、B与材料品种和施工条件有关的经验系数c 强度等级富裕系数:1.01.13,混凝土抗压强度经验公式的运用:1、已知水泥强度,估算某一强度混凝土的水灰比2、已知水泥强度和水灰比,估算配制出的混凝土可达到的强度。,2、骨料的种类及级配,碎石表面愈粗糙,骨料与水泥砂浆之间粘结力愈大,混凝土的强度愈高。骨料粒形以三维长度相等或相近的球形或立方体形为好。骨料级配愈好,填充愈密实,混凝土强度愈高。,3、施工因素的影响,搅拌愈均匀,振捣愈密实,混凝土强度愈高;机械振捣比人工振捣更充分、均匀,混凝土强度更高。,4、养护条件的影响,混凝土的养护是混凝土浇筑完毕后,使混凝土在保持足够湿度和适当温度的环境中进行硬化,并增长强度的过程。混凝土强度取决于水泥的水化状况,受养护条件影响。养护条件是混凝土成型后的养护温度与湿度。,养护温度高时,硬化速度较快,养护温度低时,硬化比较缓慢,当温度低至0以下时,混凝土停止硬化,且有冰冻破坏的危险。,混凝土浇筑后,应在12小时内进行覆盖草袋,塑料薄膜等;使用硅酸盐、普通水泥拌制的混凝土,浇水养护时间应不小于7d;使用火山灰水泥、粉煤灰硅酸盐水泥或掺缓凝剂的混凝土,浇水养护应不小于14天。,干燥条件下,浇水养护不得少于21d;平均温度低于5时,不得浇水养护,可涂刷保护膜,防止水分蒸发。,各龄期混凝土强度的增长值,5、龄期的影响,根据经验,混凝土强度与龄期的对数成正比:fn/f28=lg n/lg 28fn 混凝土 n d 龄期的抗压强度,MPaf28 混凝土28d 龄期的抗压强度,Mpa n 养护龄期,n 3d,混凝土各龄期相对强度值,6、试验条件对混凝土强度值测定的影响,试件尺寸的影响:试件尺寸越小,试验的强度值越大。加荷速度的影响:加荷速度越快,测得的强度值偏高。,5.5 混凝土的耐久性,耐久性:抵抗环境介质作用并长期保持其良好的使用性能和外观完整性,从而维持结构的安全,正常使用的能力。混凝土的耐久性包括:抗渗性、抗冻性、抗冲磨性、抗侵蚀、抗碳化等。,(一)混凝土的抗渗性,1、定义 混凝土的抗渗性是混凝土抵抗有压介质(水、油、溶液等)渗透作用的能力,它是决定混凝土耐久性的重要因素。对地下建筑、水利工程和海港工程等,均要求混凝土有足够的抗渗性。,2、抗渗性的表示方法 抗渗等级:以28d龄期的标准混凝土试件,在标准试验方法下,以每组六个试件四个未出现渗水时所能承受的最大水压力值来确定。W2、W4、W6、W8、W10、W12能抵抗0.2、0.4、0.6、0.8、1.0、1.2 MPa 的水压力而不渗透。渗透系数:越小,抗渗性越强。,3、混凝土渗水原因内部存在渗水通道来源:振捣不密实;水泥浆多余水分蒸发;泌水形成的孔隙和微裂缝。主要影响因素:水灰比,水灰比与混凝土抗渗等级的大致关系,4、提高混凝土抗渗性的主要措施(1)选择合理的水泥品种(2)采用较小的水灰比(3)选择适宜的骨料粒径,级配良好且干净的骨料(4)掺入适量的减水剂、引气剂、防水剂和粉煤灰等混合材料(5)适当增加砂率(6)加强养护,(二)混凝土的抗冻性,1、定义抗冻性是混凝土在吸水饱和状态下能经受多次冻融作用而不破坏,同时不严重降低强度的性能。,2、表示方法抗冻等级是以28天龄期混凝土标准试件,在吸水饱和状态下所能承受的冻融循环次数N来确定。要求其强度降低不超过25%,质量损失不超过5%。F50、F100、F150、F200、F300、F400,3、混凝土抗冻等级的选用根据工程所处环境,年冻融循环次数按有关规范选用。严寒气候条件、冬季冻融交替次数多、处于水位变化区的外部混凝土,以及钢筋混凝土结构或薄壁结构、受动荷载的结构,均应选用较高抗冻等级的混凝土;,抗冻性好的混凝土,抗温度变化,抗干湿变化、抗风化等性能也好,因此温和地区的水工建筑、民用建筑也应提出抗渗要求。,4、影响抗冻性的因素:(1)水泥品种、标号(2)水灰比(3)外加剂、掺合料(4)骨料品质,(四)混凝土的碱骨料反应水泥中的碱类与骨料发生化学反应,使混凝土发生不均匀膨胀,造成裂缝,强度模量下降等不良现象,这类碱与骨料发生的反应统称碱骨料反应。,发生碱骨料反应的必要条件:骨料中含有一定量的活性成分(活性氧化硅)混凝土中含碱量(K2O及Na2O)较高 混凝土中有水分,防止碱骨料反应措施:选择非活性骨料;选用低碱水泥,控制混凝土总含碱量;在混凝土中掺入活性掺合料,抑制碱骨料反应;在混凝土中掺入引气剂 防止外界水分渗入混凝土内部,(五)混凝土的碳化(中性化),1、定义水泥石中的Ca(OH)2与空气中的CO2,在有水分存在的条件下,发生反应生成CaCO3,并使混凝土中Ca(OH)2浓度下降,称为混凝土的碳化。,2、碳化对混凝土的不利影响(1)碳化引起混凝土收缩,使混凝土表层产生微细裂缝,严重影响混凝土结构的使用寿命。(2)碳化发展到钢筋层时,使钢筋表层的钝化膜遭到破坏,发生生锈,最终导致钢筋混凝土结构的破坏。,4、影响碳化速度的主要因素:(1)环境中的CO2浓度:浓度越高,碳化速度越快。(2)环境湿度:环境的相对湿度在5075时,混凝土的碳化速度最快。,5、减少碳化作用不利影响的措施(1)采用适当的保护层(2)合理选择水泥品种(3)采用水灰比小,单位水泥用量较大的混凝土配合比(4)使用减水剂,改善混凝土的和易性,提高混凝土的密实度(5)加强施工质量控制,(七)提高混凝土耐久性的主要措施,1、严格控制水灰比和水泥用量2、组成材料3、适当掺用减水剂和引气剂4、施工,5.6 混凝土的质量控制,混凝土质量是影响混凝土结构可靠性的一个重要因素,为保证结构的可靠性,必须在施工过程的各个工序对原材料,混凝土拌合物及硬化后的混凝土进行必要的质量控制。混凝土的质量用抗压强度作为评定指标。,一、混凝土质量波动的原因:1、原材料质量,材料中水泥是影响混凝土强度最重要的因素,如水泥品种、标号的改变、水泥的实际强度,储存水泥条件及存放时间的长短等均会引起混凝土质量的波动。,骨料的产地、骨料级配、骨料质量与颗粒形状均会对混凝土强度产生影响,因此重要的是尽量应用同一产地,同一品种、规格和级配的骨料,同时注意骨料的堆放应减少级配的变化。外加剂的品种、性能、掺量、掺加方式以及外加剂质量的波动均会对混凝土质量产生影响。,2、配料误差3、施工工艺(拌和、运输、浇筑、捣实、温度与养护)4、试验误差,二、混凝土强度的数理统计参数,(1)平均值(可代表总体平均值),(2)标准差(可代表总体标准差)(3)离差系数CV,和 Cv是确定强度分布特性的重要参数:(1),Cv愈大,强度分布曲线愈矮而宽,质量愈不均匀。(2),Cv愈小,强度分布曲线峰值越高越集中,质量愈均匀。,(4)混凝土强度保证率,混凝土强度总体中,等于及大于设计强度值出现的概率,称为强度保证率。,在混凝土施工中,检验混凝土强度保证率P是否满足要求时,其P可由试验数据求得:,三、概率度 混凝土设计强度等级与平均强度的差值与标准差之比 用统计方法计算出混凝土强度总体(或样本)的平均值和标准差,即可得出混凝土的概率度t。,混凝土的概率度t与混凝土的强度保证率P有一一对应的关系,在混凝土强度正态曲线方程中,令随机变量,即可变为标准正态分布,概率度t自t1 出现的概率P(t 1)=1一(t1)。它相当于图中阴影面积,不同t值的P(t)值表,5.6.5 混凝土施工质量控制图,为了便于及时掌握并分析混凝土质量的波动情况,常将质量检验得到的各项指标:水泥标号、混凝土坍落度、水灰比和强度与样本序号的关系等,绘成质量控制图。,(1)以实验测量的强度值为纵坐标,实验组次为横坐标。(2)以立方体抗压强度的平均值 为中心线(3)以 为上下警戒线(4)以 为上下控制线,5.7 普通混凝土的配合比设计,混凝土配合比是指混凝土中水泥、砂、石子和水四种主要材料数量之间的比例关系。配合比设计就是合理确定单位体积混凝土中各组成材料的用量,表示方法1、每m3混凝土中各材料的质量:如1m3混凝土:水泥300kg、水180kg、砂720kg、石子1200kg;2、以水泥质量为1,各材料的质量比:如:水泥:砂:石:1:2.4:4.0,水灰比=0.60,(一)混凝土配合比设计的基本要求,(1)满足混凝土施工所要求的和易性;(2)达到混凝土结构设计的强度等级;(3)满足工程所处环境对混凝土耐久性的要求;(4)符合经济原则,节约水泥,降低成本。,(二)混凝土配合比设计的基本资料,1、了解工程设计要求的混凝土强度等级,强度保证率,施工水平,以便确定混凝土配制强度;2、了解工程所处环境对混凝土耐久性的要求,主要是抗渗、抗冻性要求,以便确定所配制混凝土的最大水灰比和最小水泥用量;,3、了解结构构件断面尺寸及钢筋配置情况,以便确定混凝土骨料的最大粒径,拌合物的坍落度;4、了解混凝土施工方法及管理水平,选择混凝土质量控制的标准差,计算配制强度;5、掌握原材料的性能。,(三)混凝土配合比设计的步骤,1、初步配合比的计算(经验公式或图表)2、试拌调整,确定基准配合比(满足和易 性)3、实验室配合比确定(强度及耐久性)4、施工配合比换算,1、初步配合比的计算(1)配制强度的确定,普通混凝土配制强度:,普通混凝土强度标准差0取值,水工大体积混凝土标准差0值,(2)确定水灰比,A、B选用表,水灰比与混凝土抗渗等级的大致关系,抗冻混凝土水灰比要求,(3)确定单位用水量根据混凝土拌合物坍落度、粗骨料的种类和最大粒径来选取,参照表初步确定单位用水量。,(4)计算混凝土的单位水泥用量,根据已选定的单位用水量、水灰比,计算单位水泥用量 水泥用量还应大于规范规定的最小水泥用量。,(5)选取合理砂率 参照表或近似公式初步确定含砂率。,(6)计算砂、石用量 绝对体积法,假定混凝土拌合物的体积等于各组成材料绝对体积和混凝土拌合物中所含空气的体积总和。,=,(2)假定表观密度法,=,1初步配合比的试拌、调整 按初步配合比,称取拌制0.0150.030m3混凝土所需的各项材料,按试验规程拌制混凝土,测其坍落度,观察粘聚性及保水性。若和易性不符合要求,则调整砂率或用水量(保持水灰比不变),再进行拌和试验,直至符合要求。,2、基准配合比,和易性调整好后,需测出该新拌混凝土的实际表观密度和本次拌和时各材料的实际用量。,根据拌和时各材料的实际用量(C、W、S、G)和实测的该拌合物的表观密度,按下式计算该混凝土的基准配合比:令,3 检验强度及耐久性,确定实验室混凝土配合比 按基准配合比,制作强度、抗渗、抗冻等试件,标准养护至规定龄期,进行试验。如果混凝土的强度、耐久性满足要求,基准配合比即为实验室配合比。否则,应将水灰比进行修正,并重新反复做试验,直至符合要求为止。,可以基准配合比为基础,同时拌制35种配合比,进行强度及抗渗性、抗冻性等性能试验。可作出强度水灰比曲线,抗渗等级及抗冻等级水灰比曲线,从中选出满足各项技术要求的配合比。,对于大型混凝土工程,在确定初步水灰比时,就同时选取35个值,对每一水灰比,又选取35种含砂率及35种单位用水量,组成多种配合比,平行进行试验并相互校核。通过试验,绘制水灰比与单位用水量,水灰比与合理砂率,水灰比与强度、抗渗等级、抗冻等级等的关系曲线,并综合这些关系曲线最终确定实验室配合比。,4、施工配合比的换算,骨料含水率变化时施工料单计算实测工地砂及石子的含水率分别为a%及b%,则混凝土施工配料为:,【例5-1】某房屋为钢筋混凝土框架工程,混凝土不受风雪等作用,设计混凝土强度等级C30,施工要求坍落度为3050mm,施工单位无强度历史统计资料,试设计该混凝土配合比。,1.基本资料(1)设计要求:混凝土强度等级为C30,强度保证率为95%,施工单位无强度历史统计资料,根据表取=5.0MPa;混凝土拌和物坍落度为3050mm。(2)所用原材料:1)水泥。根据该工程情况,选用强度等级42.5MPa的普通水泥。水泥实测强度49.3MPa,实测密度c3150kg/m3。,2)粗骨料。石灰岩碎石,DM40mm,取540mm连续级配,实测表观密度2700kg/m3,松散堆积密度1550kg/m3。3)细骨料。河砂,细度模数为2.70,属中砂,级配合格,实测表观密度2650kg/m3,松散堆积密度1520kg/m3。粗细骨料的品质均符合规范的要求,含水状态以干燥状态为基准。,2初步配合比计算(1)混凝土施工配制强度计算 由配制强度公式有:30.01.6455.038.2MPa,(2)初步确定水灰比(W/C):由强度公式有 0.57,(3)初步估计单位用水量(W):根据已知的坍落度值3050mm,碎石最大粒径为40mm,查表可得:W=175(kg/m3),(3)初步估计砂率S/(S+G):根据碎石最大粒径DM=40mm,水灰比0.57,查表5-13有=35%,(5)计算粗、细骨料用量:由于本例题中已知各材料的密度值,所以按绝对体积法计算为方便。本题未使用引气剂,可取1.0,则有,解上式得:S=683kg/m3;G=1267kg/m3。,初步配合比为:C=307kg/m3、W=175kg/m3、S=683kg/m3、G=1267kg/m3,3试拌调整,确定基准配合比,按初步配合比,称取拌制0.02 m3混凝土所需的各项材料:C=6.14kg、S=13.66kg、G=25.34kg、W=3.50kg。拌制混凝土,测得的坍落度为20mm,需增加水泥浆4%(即水泥0.24kg、水0.14kg)。重新拌和混凝土,测得坍落度为45mm,粘聚性及保水性良好,和易性满足要求。,初步配合比:C=307kg/m3、W=175kg/m3、S=683kg/m3、G=1267kg/m3,该混凝土各种材料实际用量为:6.38kg、=13.66kg、25.34kg、3.64kg。实测混凝土拌和物表观密度2430kg/m3,计算得K=49.5716,可算得基准配合比为:C316kg/m3、S677kg/m3、G=1256kg/m3、W=180kg/m3。即 C:S:G:W1:2.14:3.97:0.57。,4检验强度确定实验室配合比,以基准配合比为基础,分别拌制不同水灰比的三种混凝土,测定其表观密度及28d强度,按作图法求得W/C=0.53。实测混凝土表观密度=2431kg/m3,可算得,该混凝土的各项材料用量为:C=337kg/m3、S=671kg/m3、G=1244kg/m3、W=179kg/m3。,5.8 混凝土外加剂,外加剂是指在混凝土拌和过程中掺入,用以改善混凝土性能的物质,掺入量一般不超过水泥质量的5%。外加剂对混凝土性能的良好改善,它在工程中应用的比例越来越大,外加剂已逐渐成为混凝土中必不可少的第五种成分。,混凝土外加剂按其主要功能分为四类:1、改善拌合物流动性能(减水剂)2、调节凝结硬化性能(缓凝剂、早强剂、速凝剂)3、改善耐久性(防水剂)4、改善其他性能(膨胀剂),一 减水剂,减水剂指在混凝土坍落度基本相同的条件下,能减少拌和用水量的外加剂。按功能分有普通减水剂、高效减水剂、早强减水剂、引气减水剂等。,(一)常用的减水剂,(1)木质素磺酸盐系减水剂 根据其所带阳离子的不同,有木质素磺酸钙(木钙)、木质素磺酸钠(木钠)、木质素磺酸镁(木镁)等。其中木钙减水剂使用较多。,木钙减水剂是由生产纸浆或纤维浆的废液,经生物发酵提取酒精后的残渣,再用石灰乳中和、过滤、喷雾干燥而制得的棕黄色粉末。,木钙减水剂的掺量,一般为水泥质量的0.2%0.3%。当保持水泥用量和混凝土坍落度不变时,其减水率为10%15%,混凝土28d抗压强度提高10%20%;若保持混凝土的抗压强度和坍落度不变,则可节省水泥用量10%左右;若保持混凝土的配合比不变,则可提高混凝土坍落度80100mm。,(2)多环芳香族磺酸盐系减水剂 主要成分为萘或萘的同系物的磺酸盐与甲醛的缩和物,又称萘系减水剂。萘系减水剂的减水、增强效果显著,属高效减水剂。,(3)水溶性树脂系减水剂 以水溶性树脂为主要原料,如三聚氰胺树脂等。属于高效减水剂,适用于早强、高强、及流态混凝土等。,1表面活性剂 表面活性剂是指在掺入量很少时,即能大大降低溶剂表面张力(界面张力)的物质。表面活性剂的分子其一端为易溶于水的亲水基团,;另一端为亲油基团(憎水基团)。,(二)减水剂的作用机理,当水中溶有表面活性剂时,活性剂分子常吸附在水-气界面上,并作定向排列,形成单分子吸附膜,从而显著降低溶液的表面张力,这种现象称为表面活性。,减水剂能够破坏水泥颗粒的絮凝结构,起到分散水泥颗粒的作用,从而释放絮凝结构中的自由水,增大混凝土拌合物的流动性。虽然,减水剂的种类不同,其对水泥颗粒的分散作用机理也不尽相同,但是,概括起来,减水剂分散减水机理基本上包括以下3个方面。,吸附分散作用,润滑和润湿作用,(3)起泡作用 掺减水剂时在机械搅拌作用下使浆体内引入部分气泡,这些微细气泡象滚珠一样,也有利于水泥浆的流动,增加了新拌混凝土的流动性。,使用效果:1、配合比不变,可增加流动性,而不降低混凝土强度;2、流动性和水灰比不变,可减少用水量和水泥用量,节约水泥;3、流动性和水泥用量不变,可减少用水量,降低水灰比,提高混凝土强度和耐久性。,评定减水剂减水效果的指标是采用减水率。减水率是在砂石骨料不变的条件下,保持混凝土流动性及水泥用量不变,掺外加剂的混凝土用水量较不掺外加剂的基准混凝土用水量减少的百分率。,(三)减水剂的使用方法,1、先掺法 2、同掺法 3、滞水法 4、后掺法,(1)先掺法 先掺法主要指将减水剂干粉与水泥混合,然后加入骨料与水一起拌合。该方法省去了减水剂的溶解和储存、冬季施工时的防冻等工序和设施,使用方便,而且减水剂可在水泥生产中混入,有利于减水剂的推广和使用。,(2)同掺法 减水剂预先溶解配制成一定浓度的溶液,然后在混凝土搅拌时同水一起掺入。当减水剂浓溶液与水分别同时加入拌合物中使用时,应适当延长搅拌时间。缓凝剂、缓凝减水剂及缓凝高效减水剂一般掺量较小,为胶凝材料质量的千分之几,掺入此类减水剂时以配成溶液为好,以易于控制掺量的准确性,同时溶液中所含的水分须从拌合水中扣除。,(3)滞水法 滞水法,即在搅拌过程中减水剂滞后于水23分钟加入。当以溶液加入时称为溶液滞水法,当以干粉加入时称为干粉滞水法。滞水法能显著地提高减水剂的塑化作用效果,提高减水剂对水泥的适应性,但与先掺法及同掺法相比,搅拌时间较长。,(4)后掺法 即减水剂是在混凝土搅拌好后经过一定的时间,才将减水剂一次或分多次加入到具有一定含水量的混凝土拌合物中,再经二次或多次搅拌。后掺法不仅可克服拌合物在运输途中的分层离析和坍落度损失,且减水剂的塑化作用效果及对水泥的适应性也较高。,掺减水剂混凝土的配合比设计,1、以提高混凝土拌和物的流动性为主要目的时,适当调整砂率,使粘聚性、保水性合格,保持砂石总量不变,其余材料与基准配合比相同。经试拌和调整,确定出设计配合比。,2、以节约水泥为主要目的时,保持流动性和水灰比不变。,3、以提高混凝土强度及耐久性为主要目的时,流动性和水泥用量不变,降低水灰比和砂率。,二 早强剂,能提高混凝土早期强度,并对后期强度无显著影响的外加剂称为早强剂。早强剂可加速水化和硬化,缩短养护周期,提前拆模,加快施工进度。适用于冬季施工或紧急抢修工程,以及要求加快混凝土强度发展的情况。,常用早强剂,(1)氯盐类早强剂 主要有氯化钙、氯化钠、氯化钾、氯化铁等。其中氯化钙早强效果好而成本低,应用最广。掺量为水泥质量的0.5%1%,能使混凝土3d强度提高50%100%,7d强度提高20%40%。,(2)硫酸盐类早强剂 主要有硫酸钠,硫代硫酸钠、硫酸钙、硫酸铝等。其中硫酸钠应用较多。一般掺量为水泥质量的0.5%2%,可使混凝土强度达到设计标准70%的时间缩短一半左右。,(3)有机胺类早强剂 主要有三乙醇胺,三异