欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPTX文档下载  

    第3讲 债券定价ppt课件.pptx

    • 资源ID:2133396       资源大小:1.05MB        全文页数:154页
    • 资源格式: PPTX        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第3讲 债券定价ppt课件.pptx

    固定收益证券分析,本科生课程吴文锋,2,现金流,贴现率,定价,风险管理,寻求套利,金融创新,第三讲:债券定价,要点:(1)固定利率债券的定价(2)公司债券的定价(3)浮动利率债券的定价(4)嵌入期权的债券定价,3,讨论的问题,债券的定价/估值国债与公司债在定价上的不同?嵌入期权的债券如何定价?,4,3.1 固定利率国债的定价,5,1、主观性定价根据要求的收益率,给出合理性价格2、客观性定价根据市场其他产品,确定无套利价格,6,1、给出到期收益率,计算债券价值,例子:6年期国债,面值1000,息票率 3.25%,年付息1次,如果到期收益率为4,问发行时候的价值多少?,7,现金流贴现公式:,三个问题?到期收益率 y 如何影响债券当前价值?息票率 c 如何影响现值?到期期限 T 如何影响现值?,8,(1)到期收益率的影响,到期收益率越大,债券当前价值越小含义:贴现率越大,现值越小要求的回报率越高,当前要支付的成本越低。,9,(2)息票率的影响,先考虑一个问题:对于一个5年后到期的国债,息票率为5,每年付息1次,你希望持有到期,而且期望获得的到期收益率为5,问当前价值多少?,10,前面的例子中,息票率为5,到期收益率也为5时候,债券价值刚好等于面值。问题:如果息票率变为6,价值比面值大呢?还是比面值小?如果息票率变为4呢?,11,假设面值为1,定价公式作个变换:,12,经济含义:,(1)债券价值是c/y和1的加权平均。推论:票面利率,到期收益率,与价格 YTM=coupon rate:par value bond coupon rate YTM:premium bond coupon rate YTM:discount bond,13,(2)特例1:c=0时,即为零息券,价格即为时间为T的贴现因子(3)特例2:到期期限趋近于无穷大时,即为Perpetual bond,永续债券,14,Perpetual bond,永续债券:实际上是一种类似于优先股的权益性产品定期支付固定股息没有到期日,即永久性支付成熟性公司的股价估值市盈率概念,15,附息债券的合成买入1个零息券买入当前的永续债券卖出到期日时候的永续债券,16,(3)到期时间的影响,再看前面的例子,3年期国债,每年付息1次,息票率7,到期收益率7,如果发行后经过半年,问现在价值多少?,17,计算方法:如果到了发行后1年的付息日呢?考虑付息之前和付息之后两个时刻?,18,付息之前:付息之后:,19,两个问题,在两个付息日中间,债券的价值如何随时间变化呢?在付息日,债券价值又是如何变化?,20,全价和净价,消除付息日当天付息对价格造成的跳跃式影响市场报价引入净价的概念(clean price)把原来用现金流贴现公式计算得到的称为全价(Full Price),也称为dirty price把全价拆成两部分:净价应计利息:全价-净价,21,应计利息(accrued interest)的计算,上次付息日,下次付息日,交割日,再下次付息日,交割日前利息ws,交割日后利息wb,t1,t2,应计利息,22,应计利息相当于把利息的现金流均匀化,保证报价的连续性再看前面的例子:3年期国债,每年付息1次,息票率7,到期收益率7,如果当前时间为发行后的半年,问现在的全价和净价分别多少?,23,全价应计利息:7*0.5=3.5净价:全价 应计利息=103.5-3.5=100,24,在一年后的全价:应计利息:7在一年后的净价:全价 应计利息=100,25,Exercise:,进入中国国债投资网 http:/,26,如何根据上面信息计算得到呢?,27,总结:,(1)计算应计利息;(2)全价=净价+应计利息(3)用现金流贴现公式计算出YTM;,28,Excel 2003中的Yield函数,YIELD(settlement,maturity,rate,pr,redemption,frequency,basis)注意事项:使用函数 DATE(2008,5,23)表示2008 年 5 月 23 日相关函数YIELDDISC(settlement,maturity,pr,redemption,basis):不付息的债券的yieldYIELDMAT(settlement,maturity,issue,rate,pr,basis):到期日付息的债券的yield,29,1、Settlement是成交日2、Maturity为到期日3、Rate为年息票利率。4、Pr为面值$100 的价格(净价)5、Redemption为面值$100 的有价证券的清偿价值,30,6、Frequency为年付息次数:1:按年支付;2:按半年期支付;4:按季支付7、Basis为日计数基准类型0 或省略:US(NASD)30/3601:实际天数/实际天数2:实际天数/3603:实际天数/3654:欧洲 30/360,31,举例:,期限:5年 发行时间:2004年4月30日 息票率:4.42%每年付息一次 当前时间2005年3月6日,当前债券价值为104.5元公式:Yield(date(2005,3,6),date(2009,4,30),4.42,100.94,100,1,3),32,Clean price-yield-time,前面我们发现,3年期息票率为7的国债,每年付息1次,如果yield=7%,那么当前净价、半年后净价和1年后的净价都等于100。问题:是否可推测,如果yield不变,所有时间的净价都是100呢?,33,34,Price-Yield-Time Relationship,Price of premium bond converges to par value at maturity(premium is getting lower)Price of discount bond converges to par value at maturity(discount is getting higher),35,2、给定即期利率曲线,计算债券价格,例子:假定到期收益曲线向下倾斜,有效年收益率如下:Y1=9.9%Y2=9.3%Y3=9.1%到期收益率是根据3个到期时间分别为1年、2年、3年的零息债券的价格计算出来的。问题:票面利率11%期限3年的债券的价格为多少呢?,36,37,Exercise:,一个3年期债券,息票率8,每年支付利息1次,到期收益率为9,当前的即期利率为:1-Year:6.5%,2-Year:7.0%,3-Year:9.2%问:这个债券值得花980元去购买吗?,38,A)可以,因为它被低估大约24.50元.B)不可以,它被高估大约5.60元.C)不可以,它被高估18.60元.D)可以,它被低估15.42元.,39,总结:如果债券未来的现金流确定,则可根据到期收益率曲线计算得到任何债券的价格。问题:为什么要这么定价?,40,任何现金流量都看成零息债券的合成物比如,附息债券就是零息债券的合成物举例:3年期,息票率为5,每年付息1次的附息券相当于3个零息券反过来:零息债券也是附息债券的合成物,3.2 债券的合成与套利,41,例:有三个附息债券 Time A B C 0-90.284-103.004-111.197 1 5 10 15 2 5 10 115 3 105 110 0问题:如何通过A、B、C来构建一个1年期的零息债券,面值100?,42,债券的合成(组合)方法:也就是如何决定附息债券的购买数量,使得组合的未来现金流量满足要求。,43,求解方程,44,如果两个金融工具的未来现金流相等,那么它们的现值也必相等:所以零息债券价值为:90.284*(-25.3)+103.004*(24.15)+111.197*(-1)=92.16,45,合成债券的一般方法,46,例子1:年金债券,年金债券(annuity)指未来现金流等额(单位1)、定期的债券。比如,分期付款购物,等额按揭贷款,未来现金流¥1¥1¥1¥1,0 1 2 3 4 时点,47,如何计算年金债券的现值?,第一种方法(期限结构):根据贴现因子求解,则n期年金现值an等于:第二种方法(到期收益率为RA)第三种方法(用永续债券组合),结果同第二种方法,48,例子2:,例.有三个债券A,B,C,偿还期都是10年,付息日相同,面值都是100.票面利率与价格如下:bond 票面利率 价格 到期收益率 A 8 117.83 5.62 B 6 103.645.52 C 4 87.465.68,49,例子中的附息债券A、B、C都可以被分解为两个部分:年金证券和零息债券比如,A债券:可看成8个年金债券和1个10年期零息票债券组合而成。,50,如果零息债券看成票面利率最小化(0)的债券则年金证券可以被理解为票面利率极大化的债券面值为0,票面利率无穷大因此,一般附息债券可以被理解为这两种债券的合成物。,51,假设A债券的到期收益率为x,年金债券的到期收益率为RA,10年期零息票债券的到期收益率为R10,则:可得出:,52,附息债券到期收益率一定介于这两个证券到期收益率之间票面利率越低,年金证券的权重越低,该附息债券的到期收益率越靠近零息债券;如果票面利率很高,年金证券的权重就越大,那么附息债券的到期收益率就越靠近年金证券,53,再回到例子,三个债券可写出三个式子:有什么问题吗?,54,(1)+(3)/2,称为(4)式子,再与(2)比较:问题出在哪里?,55,用债券A和债券C来合成B得出的价格要小于债券B的市场价格即相对于A、C而言,债券B的市场定价过高。买进1份债券A和C的同时,卖出2份债券B,则可获得套利,56,市场无套利定价理论认为:存在两个不同的资产组合,如果它们的未来损益(payoff)相同,那么他们的现值应该相同,57,Example:,年付息的国债,市场价格如下:期限 YTM Coupon 市场价格 1 3%0 97.087 2 7%0 87.344 2 7%7%100问题:根据上面三种债券的定价,市场是否存在套利机会?如果存在,如何构造套利组合?,58,解答:,各个债券的现金流如下:Time 0 1 2 债券A-97.087 100 0 债券B-87.344 0 100 债券C-100 7 107债券C由 0.07份A和1.07份B合成,则:97.087*0.07+87.344*1.07=100.2542所以,相对于A和B,债券C被市场低估,应该买进C和卖出A、B,59,套利组合构造如下:(1)买进1份债券C(2)卖出0.07份A和1.07份B组合的成本为:-100+97.087*0.07+87.344*1.07=0.2542 由于将来现金流刚好为零,所以0.2542为净盈利。,60,另外的写法:,把各个债券看成零息债券的合成,则:(1)*0.07+(2)*1.07即为:,61,Exercise:,假定到期收益曲线向下倾斜,有效年收益率如下:Y1=9.9%Y2=9.3%Y3=9.1%到期收益率是根据3个到期时间分别为1年、2年、3年的零息债券的价格计算出来的。已知票面利率11%期限3年的债券的价格为$102.问题:是否存在套利机会,如何得到这一机会?,62,例子,有两种债券A和B.债券 A 在时点1,2,3年各支付$1.A的当前价格为$2.24。债券 B 在时点1和3支付$1,在时点2支付$0,其当前价格为$1.6.问题1)计算2年期零息债券的到期收益率2)如果存在债券C,在时点2支付$1,价格为$0.74.如何获得$10的无风险收益。假设A,B,C都可以卖空。,63,答案:(1)r2=25%(2)买进1份A,卖空份B,再卖空1份C,则可获得无风险套利$0.1,把这交易放大100倍,即可。,64,无风险套利与Fisher方程,6年期国债,面值1000,息票率 3.25%,年付息1次,如果到期收益率为4,当前价值为960.68。问题:假设1年后,5年期国债的YTM仍然为4%,不用贴现率公式计算,能否写出1年后的债券价值(付完利息后)?,65,债券的1年投资回报率应该等于无风险利率 960.68*(1+4%)=32.5+xFisher方程:B0(1+i)=c+B1 i=c/B0+B/B0,即y=current yield+B/B0葡萄园租金与名义利率,66,Fisher 方程的应用,Current yield,coupon rate,YTM三者孰大孰小?Exampl1:04国债03期,息票率为4.42%2005年3月6日,价格为104.5元到期收益率为4.16%比较这个国债的三者大小?,67,再看:,2001记帐7期(20年)上市日期:2001-8-20 息票率为:4.26%,年支付1次 到期日:2021-8-20 当前时间:2005-3-6,价格:93.85问题:Current yield,coupon rate,YTM三者孰大孰小?,68,总结,利率期限结构,同类产品,定价,无套利定价原理,合成,套利“三镜”,衍生产品,理论,空间,时间,69,3.3 企业债的定价,“02电网3”(上证代码:111017)即02年发行的国家电力公司债,可参见附录1三年期债券到期一次还本付息,票面利率3.50%,2005年6月19日到期在2005年2月21日收盘时全价为109.19问题:这109.19是用即期利率曲线定价得出的吗?,70,Yield Spread,Yield Spread利差、到期收益率差指两种同样期限的债券的到期收益率的差值,一般称为Nominal Spread,名义利差一般把要比较的到期收益率称为参考到期收益率(reference yield),很多情况是国债yield,71,举例:两种10年期的债券(可用前面例子)息票率 价格 到期收益率国债 6%100.00 6.00%债券A 8%104.19 7.40%这两种债券的名义利差为:7.40%-6.00%1.40%,即140 bp,72,利差的度量方法,Absolute spread yield A yield BRelative spread(yield A yield B)/yield BYield ratioyield A/yield B,73,Example:,Two bonds,A and B have yields of 4.75%and 5.5%,respectively.Using bond A as areference bond,we get three yield spreads.Absolute=5.5 4.75=75bpRelative=0.75/4.75=0.158Yield ratio=5.5/4.75=1.158,74,Yield Spread Measures,Absolute yield spread is the most commonly used.May stay at the same level if interest rates are rising or falling The relative yield spread and yield ratio are better measures,75,Yield Spread Measures,Embedded options affect yield spreads Higher yield to offset risk Overstatement and understatement of the true yield,76,板块间利差与板块内利差,板块间利差(Intermarket yield spread)国债政府机构债券、市政债券公司债券MBSABS外国债券板块内利差(Intramarket yield spread)on-the-run and off-the-runAAA and BBB,etc.,77,举例-1,相对于美国国债的利差(7/23/99),bpissuer Rating 2-year 5-year7-year10-year30-yearMerrill Lynch Aa3 90115125148167Citicorp Aa2 84 118123135160Bank America Aa386120128138162Time Warner Baa387111120138158Philip Morris A2 97120135155175Sprint Baa185105116140158MCI/World com A3 7495106119136,问题:为什么不同公司债券利差不同?,78,79,80,81,举例-2,统计2007.05.25至2012.07.20中国企业债券市场的信用利差情况,82,影响利差的因素,信用风险流动性税收待遇嵌入期权,83,信用利差,信用利差(Credit Yield Spread)不同信用评级的两种债券之间的到期收益率差,但其他方面都一样,包括期限,息票率等信用利差与经济周期During an expanding economy,credit spreads decline“Flight to quality”in weak markets/economy,84,信用利差,不同行业的利差(7/23/99)Sector AAA AA ABBBIndustrials90 97 128152Utility 88 94 110137Finance 94 120 134158Banks 120 130145,85,流动性,流动性越好,利差越小Greater liquidity=lower spread影响流动性的因素on-the-run and off-the-run规模投资需求其他风险,86,税收待遇,有些债券的利息是减税或免税的市政债券(municipal bond)就是免税的不同投资者的税率也不同高税率的投资者偏好免税债券这两个因素会影响投资者对债券的需求,从而影响不同债券的利差,87,税后收益率After-tax yield税后收益率=税前收益率*(1-边际税率)等税收益率Taxable-equivalent yield等税收益率=免税收益率/(1-边际税率),88,Example:,比如甲和乙投资者的边际税率分别为18%和33%,债券A和B的到期收益率分别为7%和5%,其中债券B为免税债券问题:投资者甲和乙分别应该投资哪种债券?,89,实际中的税收问题很复杂,持有债券的性质不同时候,采用不同的会计处理方式,税收也不同交易性金融资产持有到期投资可供出售金融资产不同机构,不同品种债券,税收不同基金和银行国债和其他债券,90,基金的债券投资税收,91,银行的交易性金融资产账户,92,银行的持有到期投资,93,会计处理与债券征税的方式对比(以银行为例),94,95,再回到公司债券的定价问题,名义利差:能用来比较公司债券与国债之间的信用风险程度但存在一个问题:如果是息票率为10%的10年期公司债,那么就要找息票率为10的国债?而息票率为10的国债不一定存在,96,名义利差的缺陷:(1)没有考虑到期收益率的期限结构(2)对于嵌入期权的债券,未来利率改变时,现金流会变化解决办法:(1)零波动率利差 Zero-volatility(2)经过期权调整的利差OAS,option-adjusted spread,97,Z-利差(静态利差),Z-利差零波动率利差 zero-volatility spread也称为静态利差(static spread)假设未来的利率不发生变化,即波动率为0,那么此时债券的现金流也不发生变动用于衡量非国债债券与国债债券之间的价格差异,98,Z-利差的计算方法,Z-利差是债券所实现的收益率会在国债到期收益曲线之上高多少个基点。指假定投资者持有至偿还期不是债券与国债在到期收益率曲线一个点上的差别,而是反映债券收益率曲线超过国债收益率曲线的程度。,99,举例,例子:某一公司债券,票面利率 8%(半年付息),期限3年,价格 106.56,各个期限的即期利率如下。名义利差和Z-利差是多少?Period years spot rate 1 0.5 3 2 1 3.3 3 1.5 3.6 4 2 3.8 5 2.5 4 6 3 4.2,100,(1)先计算名义利差计算同期限同息票率国债的YTM计算公司债券的YTM(2)计算Z利差,101,根据即期利率曲线,可得国债的价格为:,102,通过EXCEL过程,算出国债的YTM=4.14公司债券的YTM=5.66名义利差:5.66 4.14=1.52,即152个bp,103,Z利差计算过程分别加上一定的Z-利差后,对现金流进行贴现,以使得价格等于贴现值总和采用数值算法,104,计算 Z利差,105,在EXCEL中的计算可得:Z利差为:150bp,106,Exercise,一公司债,票面利率4%,期限3年,假设年付息1次,价格为98.21,即期利率如下:Period years spot rate 1 1 3.3 2 2 3.8 3 3 4.2问题:名义利差和Z-利差分别是多少呢?,107,Period years spot rate cash discount present factor value 1 1 3.3 4 0.9681 3.8722 2 2 3.8 4 0.9281 3.7125 3 3 4.2 104 0.8839 91.9243 price 99.51,108,答案:国债的YTM:4.176%公司债的YTM:4.653%名义利差:4.653%-4.176%=47.7bpZ-利差:47.5bp,109,问题:什么情况下名义利差会与Z利差相等?什么因素影响它们之间的差别?,110,Z-利差与名义利差间的差距取决于票面利率偿还期限本金偿还的结构比如按揭贷款的等额还款利率期限结构,111,公司债券的定价过程,确定即期利率曲线确定 Z-Spread按照即期利率曲线加上Z-Spread,进行现金流贴现,112,(3)一般债券定价的总结,现金流,贴现率,定价,到期收益率YTM,即期利率曲线,利差、Z利差,无违约国债,信用风险,嵌入期权,113,定价过程,Estimate the cash flowsDetermine the appropriate discount raterisk-free rate+a risk premiumCalculate the sum of present values of the estimated cash flowsThe value of a bond is a function of the presentvalue of future cash flow from coupons and the principal,114,1、计算即期利率曲线,2、估计Z-spread和OAS,3、估值模型计算,4、输出债券价值,直接现金流贴现,二叉树模型,信用风险估计,流动性风险估计,115,Difficulties in valuing bonds,Credit problemsEmbedded optionse.g.call featuresVariable rate couponsConversion privileges,116,3.4 嵌入期权债券的定价,例子:“02电网15”,(上证代码:111018)即02年发行的国家电力公司债,可参见附录1票面利率为4.86%,按年付息,2017年6月19日到期假如在2008年6月19日后,允许公司以面值赎回债券问题:能否用前面的方法进行定价呢?,117,问题:未来的现金流可能会产生变动因为有期权在作用比如,可赎回债券,赎回以后的现金流就变为0。,是什么因素导致未来现金流发生变动呢?,118,利率模型,Interest rate model以概率对利率可能随时间而变化的情况进行分析的模型比如,一般假设利率水平变化符合布朗运动(随机对数正态模型)模型:二叉树模型、三叉树模型等,119,一个利率二叉树模型,模型的基本假设(1)下一期的利率波动只有两种可能的情况:上行(上升)或下行(下降)(2)利率水平的分布为随机对数正态分布(3)利率的波动率保持不变根据当前的利率水平和利率波动率可以画出利率变化的二叉树,120,两期的利率树,121,利率树中的期,为时间单位,比如1年,半年等出现两种变化的概率相等根据布朗运动假设,两种可能的变化值与波动率之间符合一定的关系:其中:rH,rL 分别为两种可能利率水平中较大的一个和较小的一个,s 为波动率。,122,债券未来现金流的变动,利率树,债券未来现金流的变动,债券估价,(2)如何构造利率树?,(1)如何根据利率树对债券估价?,123,如何根据利率树估价?,先考虑一个不含期权的债券2年期,息票率为4债券,利息按年支付现金流如下:第1年末 第2年末 4 104未来现金流不随利率变化而变化,124,利率树和未来现金流树,3.00%,4.4225%,3.6208%,?,4,4,1004,1004,利率树,未来现金流树,125,利率树和现金流树合并,?P03.00%,44.4225%,43.6208%,1004,1004,?P1.H,?P1.L,126,根据利率树贴现,127,128,可赎回债券定价,再考虑可赎回债券2年期,息票率为4债券,利息按年支付在第1年末发行人可以100元赎回这时候根据利率树如何定价呢?,129,根据可赎回条件,发行人会以100赎回,130,131,简单总结:先算出第1年末的现金流根据可赎回条件,重新设定现金流再按照利率树进行贴现,求得现值,132,Exercise:,如果上面例子改为可回售债券2年期,息票率为4债券,利息按年支付在第1年末投资者可以100元回售这时候如何根据利率树定价呢?,133,利率树,债券未来现金流的变动,债券估价,(2)如何构造利率树?,(1)如何根据利率树对债券估价?,134,如何构造利率树,基本原则:先确定波动率s(利率变化的标准差)每一期的两种可能变化,只需要确定一个值 rL根据新发行国债的价格对rL进行无套利定价,135,Example:,假设新发行国债的到期收益率如下,利息按年支付:期限 票面收益率 市场价格 1年 3.0 100 2年 3.5 100 3年 4.2 100 4年 4.7 100,136,题外话:回顾Bootstrapping,运用Bootstrapping技术可求得即期利率:期限 票面利率 市场价格 即期利率 1年 3.0 100 3.00 2年 3.5 100 3.5088 3年 4.2 100 4.2373 4年 4.7 100 4.7689,137,问题:假设波动率s=10%如何根据新发行国债构建1期利率树?,3.00%,r1,H=r1,Le2 s,?r1,L,138,1期利率树,只需要2年期债券到期收益率3.5%,市场价100采用试错法,求r1L目标:构造出来的利率树,使得2年期债券定价刚好等于100先假设r1L=4%,如果P0 100,则说明r1L 偏小,需要增加r1L;反过来,如果P0 100,则说明r1L 偏大,需要减少r1L;,139,当 r1,L=4.0%,99.61083.00%,98.67893.504.8856%,99.51923.504.00%,100.003.50,100.003.50,140,减少r1,L,变为3.50%,100.12473.00%,99.25693.504.2749%,100.003.503.50%,100.003.50,100.003.50,141,最后,得到无套利定价的利率树,100.00003.00%,99.11663.504.4225%,99.88343.503.6208%,100.003.50,100.003.50,142,Exercise:,如何构造两期的利率树,100.00003.00%,4.4225%,3.6208%,?r2,LL,143,答案:,100.00003.00%,97.90904.204.4225%,99.69114.203.6208%,97.46104.206.9146%,98.61714.205.6612%,99.58434.204.6350%,100.004.20,100.004.20,100.004.20,144,为什么说利率树体现无套利定价原则?(1)本身的构造使得新发行国债的定价等于市场价格(2)利用利率树对无期权的债券的定价等于利用即期收益率曲线的定价。对(2)的解释:前面例子中:2年期,息票率为4,利息按年支付的债券,按利率树模型定价为:100.9521按即期收益率曲线定价:,145,两个问题,前面例子中,不含期权的息票率4.0%,2年期债券价格为100.9521但同样的债券,可赎回时其理论价格为100.7748,而可回售时,理论价格为101.148问题1:嵌入期权与不含期权的债券的价格差别在哪里?问题2:市场中,可赎回债券的价格仅为100.5,而可回售债券的价格也比理论价格低,为100.9,为什么?,146,嵌入期权的债券价值分解,嵌入期权的债券价值的组成不含期权的债券价值期权本身的价值期权本身的价值与期权的条件有关赋予发行人时,期权是负价值(变成成本)赋予债券持有人时,期权才有价值,147,可赎回债券:赋予发行人看涨期权债券持有人卖出一个看涨期权可赎回债券的价值 不含期权债券价值 看涨期权价值期权成本 不含期权债券价值 可赎回债券价值,148,可回售债券赋予债券持有人看跌期权发行人卖出一个看跌期权可回售债券的价值 不含期权债券价值 看跌期权价值期权价值 可回售债券价值不含期权债券价值,149,回到第二个问题,为什么可赎回债券的实际市场价格低于理论价格?回想利差的概念名义利差Z利差(信用风险、流动性风险引起)方法:如何用利差概念来刻画嵌入期权的债券理论价值与市场价格之间的差异呢?,150,期权调整利差,Option-Adjusted Spread 将债券价值与市场价格之间的差异转化为收益率之间的差异相对于某条基准收益率曲线利用利率树计算时,把整条利率树全部加上OAS,使得等于市场价格,151,Z Spread(static spread)OAS,?P03.00%+rOAS,99.595444.4225%+rOAS,10043.6208%+rOAS,1004,1004,152,例子:,3年期,嵌入期权的公司债如果不考虑期权,采用基于国债的期限结构直接贴现,计算得到的价格为101如果考虑期权,采用基于国债的利率树,计算得到的价格为103而市场价格为100.5,这里面就包含OAS,153,OAS的经济含义,利差:信用风险流动性风险期权风险OAS:已经扣除了期权风险信用风险流动性风险,154,Example:,OAS反映的风险补偿与基准利率曲线有关如果采用新发行国债价格来构造利率树,则OAS反映的是:非国债的信用风险非国债的流动性风险如果采用公司本身的新发行债券价格来构造利率树,则OAS反映的什么风险补偿?如果采用公司所属行业的新发行债券价格呢?,

    注意事项

    本文(第3讲 债券定价ppt课件.pptx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开