第3章静定结构内力分析课件.ppt
3-1 一般方法,3-2 叠加法,3-3 多跨静定梁(multi beam),第3章 静定结构内力计算,3-4 静定刚架(frame),3-5 静定桁架(truss),3-7 组合结构(structure),3-8 三铰拱(three hinged arch),3-1 一般方法3-2 叠加法3-3 多跨静定梁(mu,3-1 一般方法,符号规定,M:不规定正负,弯矩画在受 拉一侧。,FN:,FQ:,(1)求支反力;(2)取隔离体,列平衡方程,求控制截面内力.(3)根据内力图的变化规律,画内力图。,计算步骤,3-1 一般方法符号规定M:不规定正负,弯矩画在受 拉一侧,内力图的变化规律,(a)无均布荷载的区段,FQ图为水平线、M为斜线。有-,FQ图为斜直线、M为曲线。凹向与均布荷载的方向一致。,(b)M图的极值点在FQ=0处或FQ图变号处。,(c)铰处无力偶作用时,M=0;有-,弯矩等于力偶值。,(d)集中力作用时,M图是折线;FQ图有突变,突变值等于作用力。,(e)集中力偶作用时,M图有突变,突变值等于力偶值。,内力图的变化规律(a)无均布荷载的区段,FQ图为水平线、M为,Solution,Example Draw the M、FQ、FN curves。,(1)Compute the reactions,(2)Analysis free bodies,compute the internal forces,Internal forces at cross section CL,SolutionExample Draw the M、,Interactions at section CR,(3)Draw the internal forces curves,取隔离体时:a:约束必须全部断开,用相应的约束反力来代替。b:正确选择隔离体,标上全部荷载。,Interactions at section CR5kNC,1 简支梁的弯矩图(Moment curves of simply supported beam),弯矩叠加法(superpositon of the moment curves),1 简支梁的弯矩图M2M1FP l/4FP l/4(M1+,叠加法是数值的叠加,不是图形的拼凑。,叠加法作弯矩图步骤:Steps of constructing moment diagram by superpositon of the moment curves(1)求得区段两端的弯矩值,将弯矩纵坐标连成直线。(2)将区段中的荷载作用在简支梁上的弯矩图叠加。,叠加法是数值的叠加,不是图形的拼凑。(MJK+MKJ)/2,Example,(1)Compute the reactions,(2)Analysis free bodies,compute the interactions,(2)叠加法作弯矩图,Solution,2m2m4mFP=40kNq=20kN/mABCFP=40k,Example Draw the moment diagram of the beam,FyA=80kN,FyB=120kN,(2)Compute the internal forces of particular coross section,MC=120kNm,MB=40kNm,(3)Compute the maximum moments for the loads of AC,CB,BD acting on the same span simply supported beams,(1)Compute the reactions,Solution,=40kNm120kNm10kNm10kNm40kNmExa,3-2 多跨静定梁(Multi-span statics beam),只承受竖向荷载和弯矩Only loaded by vertical forces and moments,先算附属部分,后算基本部分。,基本部分:能独立承受外载。附属部分:不能独立承受外载。,基本部分上的荷载不影响附 属部分受力。附属部分上的荷载影响基本 部分受力。,作用在两部分交接处的集中力,由基本部分来承担。,3-2 多跨静定梁(Multi-span statics,If,then,Example 确定x值,使支座B处弯矩与AB跨中弯矩相等,画弯矩图(Determine x that making the moments at support B and the mid point of beam AB equals and draw the moment curve.,Solution,qqq(l-x)/2ql/2l/2xl-xABCDEIfth,弯矩最大值降低1/3,节约材料,中间支座截面承担弯矩,充分发挥了材料性能.,Moment Curve,ql2/12ql2/12ql2/12弯矩最大值降低1/3,Example Draw the moment curve.,Solution,Example Draw the moment cur,Example Draw the moment curve.,Solution,3FP l/2FPFPll/2lFPFPl0FPFPl0E,Example Draw the momentcurve.,2FP,Solution,Example FP2FPFP2FPaaaaaaFP2F,Example,Moment curve,Solution,qll/2l/2l/2l/2l/2ll/2qlqlql/2q,ql,ql,3ql/4,ql/2,ql/2,FQ图Shear curve,qlql/2qlql7ql/45ql/4qlql3ql/4q,Exerices,Moment curves,Exerices10kN20kN10kNm30kN020kN,Shear curve,10kN20kN10kNm30kN020kN010kN/mS,l,x,q,FyA,A,B,FyB,Inclined beam,lxqFyAABFyBlxqFyA0AFyB0Incline,FN图,Shear curve,q,ql2/8,Moment curve,qql2/8FN图Shear qql2/8ql/2ql/2M,几种斜梁荷载换算,自重,人群,几种斜梁荷载换算自重人群q1lq2l,Example,FPFP/4FN2FQ2FPM2FPFP/4FN1FQ1M,3-3静定平面刚架,3-3-1 Simply supported frame熟练、准确,(1)Compute the reactions,FP/2,FN图Axial forces,FP/2,FQ图shear,FP,FPa,M图moment,2a,a,a,FP,A,B,C,Example,(2)Draw internal forces curves,Solution,3-3静定平面刚架3-3-1 Simply suppor,Example,7FP/4,2FP,FN图 axial forces,2FP,3FP/4,FQ图shear,FP,7FPa/4,3FPa/4,FPa/2,FPa/4,M图 moment,(1)Compute the reactions,(2)Draw internal forces curves,Solution,ABC2FPFPl/2l/2llExampleFyC=7FP,Example,(1)Compute the reactions,Solution,ExampleFxC=26kNFxB=6kNFyA=8kN2,24,26,8,FN图(kN)Axial forces(kN),26,8,FQ图(kN)shear(kN),26,6,52,M图(kNm)Moment(kNm),52,12,12,(2)Draw internal forces curves,24268FN图(kN)268FQ图(kN)26652M图(,Example,1m,3m,2m,4m,A,C,D,B,2kN/m,(1)Compute the reactions,Solution,(2)Draw internal forces curves,Example1m3m2m4mACDB2kN/mFxB=0F,FN图(kN)axial force(kN),FQ图(kN)shear(kN),M图(kNm)moment(kNm),(3)校核,满足,12FN图(kN)FQ图(kN)48M图(kNm)12164,Example,(1)Compute the reactions,(3)内力图校核,自行完成,Solution,(2)Draw interaction curves,FPFN图FPFQ图FPFPlFPlM图FP002lFP2l,ql,ql,Moment curve,ql2/2,ql2/2,ql2/8,Example,Solution,Shear curve,qlFN图qlqlMoment curveql2/2ql2/,Example,Solution,FN图M/2lM/2lM/2lFQ图M图M/2M/2M/2l,Example,Solution,FN图FPFQ图FPFPlM图FPllPl0FPlFPExa,Example,Solution,qlqlFN图qlqlFQ图ql2/2M图ql2/2Exam,Example,Solution,ql2/2ql2M图qaFQ图qaFN图qaqaa/2a/2,Example,Solution,FN图2m/lFQ图2m/lmM图2mmlm2m/l2m/l,Example,Solution,4m2m4m4m2m5kN5kN/m10kNm10kNm5k,11.258.755FQ图(kN)FN图(kN)11.255,3-3-2 Three-hinged frame正确求出刚片间的相互作用力,Example,(1)Compute the reactions,Solution,3-3-2 Three-hinged frame正确求出,!结构对称,荷载对称,FN、M图对称,FQ图反对称。,!结构对称,荷载对称,M图ql2/2ql2/2FN图q,(1)Compute the reactions,Solution,ExamplelllACBFPFP(1)Compute t,!结构对称,荷载反对称,FN、M图反对称,FQ图对称。,!结构对称,荷载反对称,FN图FPFPFPlM图FPl,Example,q,a,a,a,a,a,a,A,B,C,D,E,qa,(1)Compute the reactions,Solution,Exampleqaaaaaaqaqa2qa2qaABCDEq,FN图2qaqa对称FQ图2qaqa反对称M图对称qa2/2,Example,q,l,l,l,A,B,C,(1)Compute the reactions,Solution,Exampleqlllql2/2qlqlqlABC(1)C,Example,q,l,l,l,A,B,C,(1)Compute the reactions,(2)Draw interactions curves,(3)内力图校核 自行完成,Solution,qlFQ图qlqlExampleqlllql2/2qlqlq,Example,FP/3,Solution,FP/3FP/32FP/3lFP3l3lABCFP/3FQ图,m/l2,m/l1,m/l1,m/l2,Example,Solution,mmM图l1l2mABCm/l2m/l1mm/l1m/l2E,变形三铰刚架,(1)Compute the reactions及刚片间的约束力,取整体:,FxA,左部分:,(2)Draw moment curve,Solution,aaaaABEFGJCFPaa变形三铰刚架(1)Compu,Example,Consider a free body of whole structure:simple supported frame,(1)Compute the reactions and the restrained及刚片间的约束力,Considering a free body of member CD:,Considering a free body of member EDB:,Solution,ExampleConsider a free body of,FP/2,FP/2,FN图,对称,FP/2,FQ图,反对称,FP/2FP/2FN图对称FP/2FQ图反对称FPl/4M图,Free body of member AB,Example,Free body of member CA,(1)Compute the reactions及刚片间的约束力,Free body of member CB,Solution,Free body of member ABExampleq,3qa2/23qa2/2qa2/2qa2/2qa2/2M图,练习,练习aaaaFPFPFPlllllFPllllllFP,3-3-3多层多跨刚架分清基本结构和附属结构,Example,Solution,3-3-3多层多跨刚架分清基本结构和附属结构Exampl,Example,Solution,ExampleFP2d2dddddFPdFPdFPdM图FP,练习,练习15kN5kN/m4m4m2m2m2mABCDEFG10,练习,练习qlllllq14kN/m2m2m2m2m2m2m18k,qaaaaaa2aa2aaFPFPqFPaa,3-3-4练习快速画M图 结构力学基本功,3-3-4练习快速画M图 结构力学基本功aa2aaamaa,mFP=m/2aaa2ammmaa2aqaqaaaaaFP,aaFPFPaaFPFPaaa,FPllllllFPlllFPql/2ql/2qmmlll,FPFPlllqllllFPFPllllFPFPllll,FPFPllllllll,Example,1 设C点的竖向反力为FyC,EFC看成一个荷载为FyC的三铰刚架。E、F两点的支反力都可以用FyC表示。2 ADB上只有FyA、FyB、FyC未知,完全可以求出。,Solution,Example1 设C点的竖向反力为FyC,EFC看成一个,FN图(对称)FPFPFPFQ图(反对称)FPFPFPFPM,3-3-5MFQFN在下册位移法中有重要作用,MA=0:FQBA=0 MB=0:FQAB=ql,MB=0:FQCB=-qlMC=0:FQBC=0,member BC,M FQ:利用单杆的平衡条件。弯矩按实际方向画,剪力按正向画,member AB,Example,Solution,3-3-5MFQFN在下册位移法中有重要作用MA=,FQ FN:利用结点的平衡条件。剪力按实际方向画,轴力按正向画。,Joint B,Fx=0:FNBC=0Fy=0:FNBA=-2ql,FQ FN:Joint BFNBCFNBA2qlFx,3-5 静定平面桁架,1 概述,Statically determinate trusses,桁架:结点荷载下的铰接平面直杆体系。,Sign:a tensile force is positive;a compression force is negative。,Types of trusses:,2 Compound truss:由两个简单桁架连成的几何不变体系。,3 Complex truss:除上述两种桁架以外,均为复杂桁架。,1 Simle truss:由基础或基本三角形,通过增加 二元体得到的桁架。,3-5 静定平面桁架1 概述Statically det,2 结点法(method of joints),特点:只有两个平衡条件,一次最多能解两个轴力。Notes:Only two equlibrium conditions are valiable,so we can only analyze two unknown bar forces,顺序:与去掉二元体的顺序相同(简单桁架)。,方法:利用结点平衡条件求轴力。Method:Compute bar forces by equlibrium conditions of joint.,2 结点法(method of joints)特点:只有两,Example Compute the forces of the truss.,Solution,结点1,结点2,Example Compute the,Zero Bars,无荷载作用,且0,FN1=FN2=0;No external loads,and two bars are not collinear,FN1=FN2=0;,无荷载作用,单杆为零杆.No external loads,two collinear bars,force in third bar is zero.,Zero Bars无荷载作用,且0,FN1=FN2=0,Zero Bars,无荷载作用,且0,FN1=FN2=0,无荷载作用,单杆为零杆,无荷载作用,且0,FN1=FN2 FN3=FN4,无荷载作用,0 FN1=FN2,特殊结点,K结点,Zero Bars无荷载作用,且0,无荷载作用,单杆为零,去掉零杆,Example 求桁架各杆的轴力,去掉零杆FPFPFPExample 求桁架各杆的轴力,Example求指定杆轴力,解,1 求支反力,2 求轴力,3 截面法(method of sections),Example求指定杆轴力解1 求支反力2 求,3FP/4,解,1 Compute the reactions,2 求轴力,方法:用截出来的部分桁架的平衡条件,求轴力。力矩法:除所求,Example求指定杆轴力,解,方法1,方法2,D结点,-截面,Example求指定杆轴力解方法1方法2D结点FPFN1,Example求指定杆轴力,1 Compute the reactions,然后,可以继续求解其它杆件的轴力,解,5FP/2,2 求轴力,Example求指定杆轴力1 Compute the r,为了避免计算力臂,将FN1移至B点,并分解为Fx1和Fy1,由比例关系得,-:,-:,Example求指定杆轴力,解,FN1Fx1Fy1为了避免计算力臂,将FN1移至B点,并分解,利用三个平衡方程,求FN1、FN2、FN3。然后,求解内外两个三角形各杆轴力。,Example求解由两个刚片组成的体系,FN1FN2FN3利用三个平衡方程,求FN1、FN2、FN3,取出一个三角形刚片,Example 求指定杆轴力,解,取出另一个三角形刚片,取出一个三角形刚片Example 求指定杆轴力解FP1,同理可求出A、C两点的约束力。进而可求其它杆件的内力,Example求桁架各杆内力,解,FxBFPCFyB-:同理可求出A、C两点的约束力。进而,3-7 组合结构,判断零杆:加深组合结构的认识。判断GE、GB杆的内力,提高判别能力。,Example 求各杆内力,解,3-7 组合结构FFP/2FNDFFNFA判断零杆:加深,FGFPa/6M图FQ图FGFP/6FP/6FP/3FN图F,再请学生判断零杆。,Example 做组合的内力图,解,FPFNECFNDCFNDB再请学生判断零杆。FPaaaAB,组合结构由两类杆件组成:,桁架杆:只承受轴力。梁式杆:同时承受弯矩、轴力、剪力,关键问题:正确区分两类杆件,注意:为了避免未知数过多,应尽量避免断开梁式杆。,组合结构由两类杆件组成:桁架杆:只承受轴力。关键问题:正确区,1 概述,拱:能在竖向荷载作用下,产生水平推力的结构。弯矩比相应的梁小。,C:顶铰 f:矢高 l:跨度,曲梁,3-8 三铰拱(Three-hinged Arch),1 概述拱:能在竖向荷载作用下,产生水平推力的结构。C:顶,为减小水平推力,采用带有水平拉杆的拱。,为增大使用空间,将拉杆放在较高的位置。,为减小水平推力,采用带有水平拉杆的拱。为增大使用空间,将拉杆,2 计算方法,(1)拱与代梁支反力的比较,结论:1 三较拱的竖向反力与代梁相同;2 拱的水平推力等于代梁的跨中截面弯矩除以矢高;3若三铰位置不变,荷载不变,则水平推力不变。,FVBFVACflABFPFHAxFHBlABxC2 计算,(2)拱与代梁内力的比较,符号规定弯矩:内侧受拉为正;轴力:压力为正;剪力:同前。,(2)拱与代梁内力的比较FVAFPFHAFNKFQKMK符,3 合理拱轴,If M=0,M=M0-FH y,then y=M0/FH,解,代入合理拱轴公式,合理拱轴公式,3 合理拱轴If M=0M=M0-FH ythen,求 在均匀水压力作用下,半径为r封闭圆环的截面内力,FN=qr,求 在均匀水压力作用下,半径为r封闭圆环的截面内力在图示荷载,结束,结束,