第7章受约束的回归模型ppt课件.ppt
第7章 受约束的回归模型,一、模型参数的线性约束二、对回归模型增加或减少解释变量三、参数的稳定性四、非线性约束,说 明,在建立回归模型时,有时根据经济理论需要对模型中的参数施加一定的约束条件。例如:需求函数的0阶齐次性条件(参数和为零)生产函数的1阶齐次性条件(参数和为1)模型施加约束条件后进行回归,称为受约束回归(restricted regression);未加任何约束的回归称为无约束回归(unrestricted regression)。,一、模型参数的线性约束,例如对模型:,施加约束:,得:,或:,(*),(*),如果对(*)式回归得出:,则由约束条件可得:,然而,对所考查的具体问题能否施加约束?需进一步进行相应的检验。常用的检验有:F检验、x2检验与t检验。,F检验,在同一样本下,记无约束样本回归模型为:,受约束样本回归模型为:,于是:,受约束样本回归模型的残差平方和RSSR,于是,ee为无约束样本回归模型的残差平方和RSSU,(*),受约束与无约束模型都有相同的TSS,这意味着,通常情况下,对模型施加约束条件会降低模型的解释能力。但是,如果约束条件为真,则受约束回归模型与无约束回归模型具有相同的解释能力,RSSR 与 RSSU的差异变小。,由(*)式 RSSR RSSU从而 ESSR ESSU,可用RSSR-RSSU的大小来检验约束的真实性,根据数理统计学的知识:,于是:,讨论:如果约束条件无效,RSSR 与 RSSU的差异较大,计算的F值也较大。,于是,可用计算的F统计量的值与所给定的显著性水平下的临界值作比较,对约束条件的真实性进行检验。,注意,kU-kR恰为约束条件的个数。,这里的F检验适合所有关于参数线性约束的检验,如:多元回归中对方程总体线性性的F检验:H0:j=0 j=1,2,k,这里:受约束回归模型为,这里,运用了ESSR 0。,二、对回归模型增加或减少解释变量,考虑如下两个回归模型,(*),(*),(*)式可看成是(*)式的受约束回归:,H0:,相应的统计量为:,统计量的另一个等价式,如果约束条件为真,即额外的变量Xk+1,Xk+q对没有解释能力,则统计量较小;否则,约束条件为假,意味着额外的变量对有较强的解释能力,则统计量较大。因此,可通过F的计算值与临界值的比较,来判断额外变量是否应包括在模型中。,讨论:,三、参数的稳定性,1、邹氏参数稳定性检验,建立模型时往往希望模型的参数是稳定的,即所谓的结构不变,这将提高模型的预测与分析功能。如何检验?,假设需要建立的模型为,在两个连续的时间序列(1,2,,n1)与(n1+1,,n1+n2)中,相应的模型分别为:,合并两个时间序列为(1,2,,n1,n1+1,,n1+n2),则可写出如下无约束回归模型,如果=,表示没有发生结构变化,因此可针对如下假设进行检验:H0:=(*)式施加上述约束后变换为受约束回归模型,(*),(*),因此,检验的F统计量为:,记RSS1与RSS2为在两时间段上分别回归后所得的残差平方和,容易验证,,于是,参数稳定性的检验步骤:,(1)分别以两连续时间序列作为两个样本进行回归,得到相应的残差平方:RSS1与RSS2(2)将两序列并为一个大样本后进行回归,得到大样本下的残差平方和RSSR,(3)计算F统计量的值,与临界值比较:若F值大于临界值,则拒绝原假设,认为发生了结构变化,参数是非稳定的。该检验也被称为邹氏参数稳定性检验(Chow test for parameter stability)。,2、邹氏预测检验,上述参数稳定性检验要求n2k。如果出现n2k,则往往进行如下的邹氏预测检验(Chow test for predictive failure)。,邹氏预测检验的基本思想:先用前一时间段n1个样本估计原模型,再用估计出的参数进行后一时间段n2个样本的预测。,如果预测误差较大,则说明参数发生了变化,否则说明参数是稳定的。,分别以、表示第一与第二时间段的参数,则:,其中,,(*),如果=0,则=,表明参数在估计期与预测期相同,(*)的矩阵式:,可见,用前n1个样本估计可得前k个参数的估计,而是用后n2个样本测算的预测误差X2(-),(*),如果参数没有发生变化,则=0,矩阵式简化为,(*),(*)式与(*)式,分别可看成受约束与无约束回归模型,这里:KU-KR=n2 RSSU=RSS1,于是有如下F检验:,第一步,在两时间段的合成大样本下做OLS回归,得受约束模型的残差平方和RSSR;第二步,对前一时间段的n1个子样做OLS回归,得残差平方和RSS1;第三步,计算检验的F统计量,做出判断:,邹氏预测检验步骤:,给定显著性水平,查F分布表,得临界值F(n2,n1-k-1),如果 FF(n2,n1-k-1),则拒绝原假设,认为预测期发生了结构变化。,四、非线性约束,也可对模型参数施加非线性约束,如对模型,施加非线性约束12=1,得到受约束回归模型:,该模型必须采用非线性最小二乘法(nonlinear least squares)进行估计。非线性约束检验是建立在最大似然原理基础上的,有最大似然比检验、沃尔德检验与拉格朗日乘数检验.,1、最大似然比检验(likelihood ratio test,LR),估计:无约束回归模型与受约束回归模型,方法:最大似然法 检验:两个似然函数的值的差异是否“足够”大。,记L(,2)为一似然函数:无约束回归:Max:,受约束回归:Max:,约束:g()=0,或求极值:,g():以各约束条件为元素的列向量,:以相应拉格朗日乘数为元素的行向量,受约束的函数值不会超过无约束的函数值,但如果约束条件为真,则两个函数值就非常“接近”。,由此,定义似然比(likelihood ratio):,如果比值很小,说明两似然函数值差距较大,则应拒绝约束条件为真的假设;如果比值接近于,说明两似然函数值很接近,应接受约束条件为真的假设。,具体检验时,由于大样本下:,h是约束条件的个数。因此:通过LR统计量的2分布特性来进行判断。,、沃尔德检验(Wald test,W),沃尔德检验中,只须估计无约束模型。如对,在所有古典假设都成立的条件下,容易证明,因此,在1+2=1的约束条件下:,记,可建立沃尔德统计量:,如果有h个约束条件,可得到h个统计量z1,z2,zh 约束条件为真时,可建立大样本下的服从自由度为h的渐近2 分布统计量:,其中,Z为以zi为元素的列向量,C是Z的方差-协方差矩阵。因此,W从总体上测量了无约束回归不满足约束条件的程度。对非线性约束,沃尔德统计量W的算法描述要复杂得多。,3、拉格朗日乘数检验,拉格朗日乘数检验则只需估计受约束模型.受约束回归是求最大似然法的极值问题:,是拉格朗日乘数行向量,衡量各约束条件对最大似然函数值的影响程度。,如果某一约束为真,则该约束条件对最大似然函数值的影响很小,于是,相应的拉格朗日乘数的值应接近于零。因此,拉格朗日乘数检验就是检验某些拉格朗日乘数的值是否“足够大”,如果“足够大”,则拒绝约束条件为真的假设。,拉格朗日统计量LM本身是一个关于拉格朗日乘数的复杂的函数,在各约束条件为真的情况下,服从一自由度恰为约束条件个数的渐近2分布。,同样地,如果为线性约束,LM服从一精确的2分布:,(*),n为样本容量,R2为如下被称为辅助回归(auxiliary regression)的可决系数:,如果约束是非线性的,辅助回归方程的估计比较复杂,但仍可按(*)式计算LM统计量的值。最后,一般地有:LMLRW,