欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    用待定系数法求二次函数的解析式(公开课)ppt课件.ppt

    • 资源ID:2096453       资源大小:313.50KB        全文页数:18页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    用待定系数法求二次函数的解析式(公开课)ppt课件.ppt

    把k=2,b=1代入y=kx+b中,,已知:一次函数的图象经过点(2,5)和点(1,3),求出一次函数的解析式.,解:设这个一次函数的解析式为y=kx+b.,y=kx+b的图象过点(2,5)与(1,3).,2k+b=5 k+b=3,解得,k=2b=1,一次函数解析式为y2x+1,课前热身,用待定系数法求二次函数的解析式,难点:根据不同的条件选择恰当的解析式从而用待定系数法求函数解析式。,重点:用待定系数法求函数解析式。,2、经历待定系数法应用过程,体验数形结合,具体感知数形结合思想在二次函数中的应用。,学习目标,1、会用待定系数法求二次函数解析式,二次函数解析式有哪几种表达式?,1、一般式:,2、顶点式:,3、交点式:,回味知识点,y=ax2+bx+c(a0),y=a(x-h)2+k(a0),y=a(x-x1)(x-x2)(a0),解:设所求的二次函数为y=ax2+bx+c,由条件得:,a-b+c=10a+b+c=44a+2b+c=7,解方程得:,因此所求二次函数是:,a=2,b=-3,c=5,y=2x2-3x+5,例1:已知一个二次函数的图象过点(1,10)(1,4)(2,7)三点,求这个函数的解析式?,解:设所求的二次函数为 y=a(x1)2-3,例2:已知抛物线的顶点为(1,3),与y轴交点为(0,5)求抛物线的解析式?,由条件得:点(0,-5)在抛物线上,a-3=-5,得a=-2,故所求的抛物线解析式为;,即:y=2x2-4x5,y=2(x1)2-3,解:设所求的二次函数为y=a(x1)(x1),例3、已知抛物线与X轴交于A(1,0),B(1,0)并经过点M(0,1),求抛物线的解析式?,由条件得:点M(0,1)在抛物线上,所以:a(0+1)(0-1)=1,得:a=-1,故所求的抛物线为 y=-(x1)(x-1),即:y=-x2+1,思考:用一般式怎么解?,达标测试,1、已知抛物线上的三点,通常设解析式为_,2、已知抛物线顶点坐标(h,k),通常设抛物线解析式为_,3、已知抛物线与x 轴的两个交点(x1,0)、(x2,0),通常设解析式为_,y=ax2+bx+c(a0),y=a(x-h)2+k(a0),y=a(x-x1)(x-x2)(a0),达标测试,1、根据下列条件,求二次函数的解析式。,(1)、图象经过(0,0),(1,-2),(2,3)三点;,(2)、图象的顶点(2,3),且经过点(3,1);,(3)、图象经过(-1,0),(3,0),(0,3)。,2、有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m现把它的图形放在坐标系里(如图所示),求抛物线的解析式,解:设抛物线的解析式为y=ax2bxc,,根据题意可知抛物线经过(0,0)(20,16)和(40,0)三点,可得方程组,通过利用给定的条件列出a、b、c的三元一次方程组,求出a、b、c的值,从而确定函数的解析式过程较繁杂。,评价,2、有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m现把它的图形放在坐标系里(如图所示),求抛物线的解析式,解:设抛物线为y=a(x-20)216,根据题意可知:点(0,0)在抛物线上,,通过利用条件中的顶点和过原点选用顶点式求解,方法比较灵活。,评价,所求抛物线解析式为,=400a+16,2、有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m现把它的图形放在坐标系里(如图所示),求抛物线的解析式,解:设抛物线为y=ax(x-40),根据题意可知,点(20,16)在抛物线上,选用两根式求解,方法灵活巧妙,过程也较简捷,评价,16=20a(20 40),3、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6),求此二次函数的解析式。,又图象经过点(3,-6)-6=a(3-1)2+2 得a=-2故所求二次函数的解析式为:y=-2(x-1)2+2即:y=-2x2+4x,解:二次函数的最大值是2抛物线的顶点纵坐标为2 又抛物线的顶点在直线y=x+1上当y=2时,x=1。故顶点坐标为(1,2)所以可设二次函数的解析式为y=a(x-1)2+2,4 图象顶点是M(1,16)且与x轴交于两点,已知两交点相距8个单位.,解:设抛物线与x轴交于点A、点B 顶点M坐标为(1,16),对称轴为x=1,又交点A、B关于直线x=1对称,AB=8,A(-3,0)、B(5,0),此函数解析式可设为 y=a(x-1)2+16 或y=a(x+3)(x-5),1,16,A,B,-3,5,解:A(1,0),对称轴为x=2,抛物线与x轴另一个交点C应为(3,0),设其解析式为y=a(x-1)(x-3),将B(0,-3)代入上式,-3=a(0-1)(0-3),a=-1,y=-(x-1)(x-3)=-x2+4x-3,1,A,B,-3,C,3,5、已知抛物线过两点A(1,0),B(0,-3)且对称轴是直线x=2,求这个抛物线的解析式。,求一次函数关系式常见方法:1.已知图象上三点或三点的对应值,通常选择一般式2.已知图像的顶点坐标或对称轴和最值,通常选择顶点式 3.已知图像与x轴两个交点坐标,通常选择交点式,反思总结,课本P120 6,7(必做)课本P120 8(选做),请同学们认真完成作业!,布置作业,再 见,

    注意事项

    本文(用待定系数法求二次函数的解析式(公开课)ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开