钠钙交换体基因稳定转染及药物筛选细胞模型的建立.docx
史上最快最全的网络文档批量下载批量上传,尽在:钠钙交换体基因稳定转染及药物筛选细胞模型的建立龙雁,袁辉,王晓良*中国医学科学院&北京协和医学院 药物研究所 先农坛街1号,北京,100050摘要:目的 构建三种不同亚型的CHO-NCX稳定转染细胞株,以便筛选可能的钠钙交换体(NCX)调节剂。 方法 采用脂质体法将NCX目的基因稳定导入CHO细胞中,检测稳定转染细胞株中NCX的蛋白表达和电流大小,并观察温度和NCX抑制剂KB-R7943对电流的影响。 结果 Western blot结果显示与CHO-pcDNA3.1空白细胞相比,CHO-NCX稳定转染细胞株中NCX蛋白的表达量显著升高;电生理结果提示CHO-NCX稳定转染细胞株中NCX电流远大于CHO-pcDNA3.1空白细胞;温度从22升高到35时,NCX电流显著增大;NCX抑制剂KB-R7943对INCX具有显著抑制作用。 结论 本试验成功的建立了特异性表达NCX1.1,NCX1.4,NCX1.5三种亚型的细胞模型,为脑缺血等疾病的研究提供了良好的药物筛选平台。关键词:NCX1.1;NCX1.4;NCX1.5;NCX抑制剂 KB-R7943;膜片钳Establishment and Evalution of Cell Model Targeted at Sodium-Calcium ExchangerLong Yan, Yuan Hui, Wang Xiaoliang (Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China)ABSTRAT: OBJECTIVE To develop potential NCX modulator with 3 different kinds of CHO-NCX cells which stably expressed NCX proteins. METHODS The NCX genes were ligated with pcDNA3.1+ vector and then stably introduced into CHO cells by liposome. Using western blot and patch clamp technique to measure the expression levels of NCX proteins and NCX currents, after which to observe the magnitude of NCX currents when temperature changed and NCX inhibitor utilized. RESULTS Compared with blank CHO-pcDNA3.1 cells, the protein amounts of stably transfected CHO-NCX cells were significantly increased; the currents of CHO-NCX cells were much higher than that of blank CHO-pcDNA3.1 cells. When temperature changed from 22 to 35, the currents of CHO-NCX cells up-regulated notably, after NCX inhibitor KB-R7943 added, the currents of CHO-NCX cells decreased significantly. CONCLUSION Our study successfully constructed a cell model which expressed a specific kind of NCX isoform in CHO cells, which provided a useful tool to search new drugs of cerebral ischemia targeted at NCX.KEY WORDS: NCX1.1; NCX1.4; NCX1.5; NCX inhibitor KB-R7943; patch clamp作者简介:龙雁,女,博士研究生 Tel:(010)63165193 longyan钠钙交换体(NCX)是细胞膜上具有9个跨膜片段的一种双向转运体,根据细胞膜内外离子浓度梯度和膜电位的不同,NCX可以通过正向转运(Ca2+ 外流)或者反向转运(Ca2+ 内流)两种转运方式将Na+ 和Ca2+以3:1或者4:1的比例进行交换,从而维持细胞内Ca2+ 的稳定1-3。生理状态下,NCX主要利用细胞内外的Na+ 浓度梯度排出细胞中的Ca2+4,而在病理状态下,当细胞内Na+ 浓度升高时,NCX反向转运可以导致细胞内钙超载。近年来越来越多的研究表明NCX与脑缺血关系非常密切,但结论并不一致。有的研究者认为抑制NCX反向转运具有脑保护作用,而有的研究者却认为激活NCX的反向转运可以有效保护神经元5。此外,在低氧缺氧,脊髓损伤后的白质退行性病变,大脑损伤,视神经损伤,神经元调亡,衰老和阿尔兹海默病等相关疾病中,也有研究提示NCX可能发挥了重要的作用6。由于NCX具有重要的生理和病理学意义,自1968年Baker等人首次报道NCX的存在以来,一直是人们研究的热点。内容包括NCX的分布表达,活性调节,结构-功能关系以及在疾病过程中的作用等方面,研究手段包括RNA/蛋白水平定位,反义寡核苷酸/RNAi技术,制备基因敲除小鼠等。但研究结果发现反义寡核苷酸技术仅在体外可行,体内无效7-9,NCX1基因敲除小鼠在胚胎状态则已死亡10。因此,在这种情况下,急需研发一种选择性的NCX抑制剂以便观察NCX的作用。比较遗憾的是,至今为止还没有找到具有高特异性的化合物,也没有以NCX为靶点的临床药物上市。哺乳动物细胞中共有三种NCX亚型,NCX 1在体内广泛存在,主要位于脑,心脏,肾脏等部位,在上述组织中,已检测到7种NCX1剪切产物,其中,NCX1.1主要位于心脏,NCX1.4,NCX1.5和NCX1.6主要分布在大脑,其余三种剪切产物。NCX2和NCX3仅在脑和骨骼肌中有表达,其中NCX3有3种剪切产物,而至今未检测到NCX2的选择性剪切产物6。此外,各种NCX亚型具有不同的分布特性,这提示不同的NCX亚型在脑缺血中的作用可能不同。同时,NCX还具有双向转运特性,这也增加了以NCX为靶点进行药物开发的难度。因此,在筛选以NCX为靶点的化合物时,必需观察化合物对不同的选择性剪切产物及其转运方式的影响。基于上述原因,本试验将NCX1.1,NCX1.4,NCX1.5三种质粒通过脂质体转染的方法稳定导入CHO细胞中,建立特异性表达NCX1.1,NCX1.4,NCX1.5三种亚型的细胞模型,并观察了温度与NCX抑制剂KB-R7943对INCX的影响,希望通过该细胞膜型筛选化合物以便开发新型的NCX调节剂。 AB结果 Fig1. Structures of pcDNA3.1+ and pcDNA3.1+/NCX plasmids. (A) Structure of blank pcDNA3.1+ plasmid. (B) Structure of pcDNA3.1+/NCX plasmids after double digestion and subsequent insertion of NCX genes to Hind and BamH site.图1. pcDNA3.1+和pcDNA3.1+/NCX质粒结构图。(A)为pcDNA3.1+质粒结构,(B)为pcDNA3.1+/NCX质粒结构,用Hind 和BamH 双酶切,再插入三种不同的NCX目的基因。1、质粒鉴定结果:12345215000bp210000bp27500bp25000bp22500bp21000bp(1)酶切:将pcDNA3.1+质粒,NCX1.1,NCX1.4以及NCX1.5质粒用BamH I和Hind 分别进行酶切,酶切产物用1%的琼脂糖电泳进行初步鉴定。Fig2. Analysis of BamH and Hind treated pcDNA3.1+ plasmid on 1% ethidium bromide-stained agarose gel. Line 1: single digestion product of pcDNA3.1+ vector by Hind ; Line 2: single digestion product of pcDNA3.1+ vector by BamH ; Line 3: double digestion product of pcDNA3.1+ vector by BamH and Hind ; Line 4: untreated pcDNA3.1+ vector; Line 5: Marker;图2. 应用BamH 和Hind 双酶切法对pcDNA3.1+载体进行分析鉴定。条带1: Hind 单酶切;条带2: BamH 单酶切;条带3: BamH 和Hind 双酶切;条带4:未处理的pcDNA3.1+载体;条带5:分子量Marker。如图所示,pcDNA3.1+质粒载体(5428 bp)中分别包含一个限制性内切酶BamH 和Hind 的酶切位点,单酶切后生成约5.4 kb的单链,符合理论值。而pcDNA3.1+载体上的BamH 和Hind 的酶切位点相隔仅18 bp,其中18 bp片段过小未能显示,另一片段大小约5.4 kb。完整的pcDNA3.1+质粒载体包含多种构像,从而出现多条条带。23451215000bp210000bp27500bp25000bp22500bp21000bp2250bpFig3. Analysis of BamH and Hind treated rat NCX1.1 plasmid on 1% ethidium bromide-stained agarose gel. Line 1: double digestion product of NCX1.1 by BamH and Hind ; Line 2: single digestion product of NCX1.1 by Hind ; Line 3: single digestion product of NCX1.1 by BamH ; Line 4: untreated NCX1.1 plasmid; Line 5: Marker.图3. 应用BamH 和Hind 双酶切法对大鼠NCX1.1质粒进行分析鉴定。条带1: BamH 和Hind 双酶切;条带2: Hind 单酶切;条带3: BamH 单酶切;条带4:未处理的NCX1.1质粒;条带5:分子量Marker。27500bp12345215000bp210000bp25000bp22500bp21000bp如图所示,NCX1.1质粒(8420 bp)中分别包含一个限制性内切酶BamH 和Hind 的酶切位点,单酶切后生成约8.4 kb的单链,符合理论值。条带2为Hind 的酶切结果,由于酶的星号活性生成一条杂带。NCX目的基因位于BamH 和Hind 酶切位点之间,双酶切生成约5.4 kb和3.0 kb两条条带。完整的NCX1.1质粒包含多种构像,从而出现多条条带。Fig4. Analysis of BamH and Hind treated rat NCX1.4 plasmid on 1% ethidium bromide-stained agarose gel.Line 1: Marker; Line 2: single digestion product of NCX1.4 plasmid by Hind ; Line 3: single digestion product of NCX1.4 plasmid by BamH ; Line 4: double digestion product of NCX1.4 plasmid by BamH and Hind ; Line 5: untreated NCX1.4 plasmid.图4. 应用BamH 和Hind 双酶切法对大鼠NCX1.4质粒进行分析鉴定。条带1:分子量Marker;条带2: Hind 单酶切;条带3: BamH 单酶切;条带4: BamH 和Hind 双酶切;条带5:未处理的NCX1.4质粒。12345215000bp210000bp27500bp25000bp22500bp21000bp如图所示,NCX1.4质粒(8315 bp)中分别包含一个限制性内切酶BamH 和Hind 的酶切位点,单酶切后生成约8.3 kb的单链,符合理论值。NCX目的基因位于BamH 和Hind 酶切位点之间,双酶切生成约5.4 kb和2.9 kb两条条带。Fig5. Analysis of BamH and Hind treated rat NCX1.5 plasmid on 1% ethidium bromide-stained agarose gel. Line 1: untreated NCX1.5 plasmid; Line 2: single digestion product of NCX1.5 plasmid by BamH ; Line 3: single digestion product of NCX1.5 plasmid by Hind ; Line 4: double digestion product of NCX1.5 plasmid by BamH and Hind ; Line 5: Marker.图5.应用BamH 和Hind 双酶切法对大鼠NCX1.5质粒进行分析鉴定。条带1:未处理的NCX1.5质粒;条带2: BamH 单酶切;条带3: Hind 单酶切;条带4: BamH 和Hind 双酶切;条带5:分子量Marker。如图所示,NCX1.5质粒(8379 bp)中分别包含一个限制性内切酶BamH 和Hind 的酶切位点,单酶切后生成约8.4 kb的单链,符合理论值。条带3为Hind 的酶切结果,由于酶的星号活性生成一条杂带。NCX目的基因位于BamH 和Hind 酶切位点之间,双酶切生成约5.4 kb和2.9 kb两条条带。完整的NCX1.5质粒包含多种构像,从而出现多条条带。(2)测序:将质粒送交至Invitrogen公司以及Takara公司进行测序,测序结果与Gene Bank中该基因目的序列一致。有个别碱基发生了无义突变,但不影响NCX蛋白的表达。测序结果略。2、质粒稳定转染鉴定:1160 kD120 kD234actin(1)蛋白表达Fig6. Protein expressions of different NCX isoforms. (n=3-5)1represents CHO-pcDNA3.1+; 2 represents CHO-NCX1.5; 3 represents CHO-NCX1.1; 4 represents CHO-NCX1.4. Data were presented as mean ± SEM (n=3-5). * P 0.05 compared with the blank cells by independent-samples t test; * P 0.01 compared with the blank cells by independent-samples t test.图6. 各NCX亚型的蛋白表达(n=3-5)1为CHO-pcDNA3.1空载体细胞; 2为稳定转染的CHO-NCX1.5细胞株; 3为稳定转染的CHO-NCX1.1细胞株; 4为稳定转染的CHO-NCX1.4细胞株。数据用mean ± SEM表示(n=3-5)。统计方法为独立样本t test。* P 0.05,* P 0.01。如上图所示,与CHO-pcDNA3.1空白细胞相比,CHO-NCX稳定转染细胞株中NCX蛋白的表达量显著升高; (2)电流大小0mV0mV-100mV100mV400mSFig6. Comparison of INCX density recorded in blank CHO cells and that in stably transfected CHO-NCX cells at membrane potential of +80 mV and -80 mV respectively. Currents were elicted by an ascending ramp pulse hyperpolarized immediately from holding potential of 0 mV to -100 mV, then depolarized to +100 mV at speed of 0.5 V/S and returned to the holding potential. Data were presented as mean ± SEM (n=3-5). 1 represents CHO-pcDNA3.1; 2 represents CHO-NCX1.5; 3 represents CHO-NCX1.1; 4 represents CHO-NCX1.4.* P 0.05 compared with the blank cells by independent-samples t test; * P 0.01 compared with the blank cells by independent-samples t test.图6.+80 mV和-80 mV电位下,稳定转染的CHO-NCX细胞株NCX电流密度与空白CHO细胞电流密度比较图。细胞钳制电位为0 mV,以0.5 V/S的速度从-100 mV去极化至100 mV,此后回复到0 mV。数据用mean ± SEM表示(n=3-5)。1为稳定转染的CHO-pcDNA3.1空载体细胞;2为稳定转染的CHO-NCX1.5细胞株;3为稳定转染的CHO-NCX1.1细胞株4为稳定转染的CHO-NCX1.4细胞株。统计方法为独立样本t test,* P 0.05,* P 0.01。电生理结果提示CHO-NCX稳定转染细胞株中NCX电流远大于CHO-pcDNA3.1空白细胞。3、温度和NCX抑制剂KB-R7943对INCX的影响温度从22升高到35时,三种亚型INCX均显著增大;在上述两种温度条件下,NCX抑制剂KB-R7943均可显著性抑制INCX。结果略。结论本试验成功的建立了特异性表达NCX1.1,NCX1.4,NCX1.5三种亚型的细胞模型,并观察了温度和NCX抑制剂对INCX的影响。全文总结综上所述,NCX具有多种基因和基因产物,能够进行双向转运,以及在转运过程中具有不同的Na+/Ca2+交换比率(3Na+/Ca2+或者4Na+/(Ca2+ + K +),这些均给NCX的研究带来困难。因而寻找一种有效的高选择性的NCX抑制剂/激动剂已成为当务之急。本试验成功的建立了特异性表达NCX1.1,NCX1.4,NCX1.5三种亚型的细胞模型,避免了上述错综复杂的影响因素,可以有效地应用于脑缺血等相关疾病的研究和化合物的筛选。致谢感谢加拿大Jonathan Lytton教授赠送的NCX质粒。References1 Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev. 1999;79:763854.2 Philipson KD, Nicoll DA, Ottolia M, Quednau BD, Reuter H,John S, et al. The Na+/Ca2+ exchange molecule: an overview.Ann N Y Acad Sci. 2002;976:110.3 Condrescu M, Opuni K, Hantash BM, Reeves JP. Cellular regulation of sodium-calcium exchange. Ann N Y Acad Sci.2002; 976:214223.4 Bers DM. Cardiac excitation-contraction coupling. Nature.2002; 415:198205.5 Jeffs GJ, Meloni BP, Bakker AJ, Knuckey NW. The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischaemia. J Clin Neurosci. 2007 Jun;14(6):507-14. 6 Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev. 2004 Dec;56(4):633-54.7 Lipp P, Schwaller B, Niggli E. Specific inhibition of Na-Ca exchange function by antisense oligodeoxynucleotides. FEBS Lett. 1995;364:198202.8 Matsuda T, Takuma K, Nishiguchi E, Hashimoto H, Azuma J, Baba A. Involvement of Na+-Ca2+ exchanger in reperfusioninduced delayed cell death of cultured rat astrocytes. Eur J Neurosci. 1996;8:951958.9 Takuma K, Matsuda T, Hashimoto H, Kitanaka J, Asano S, Kishida Y, et al. Role of Na+-Ca2+ exchanger in agonist-induced Ca2+ signaling in cultured rat astrocytes. J Neurochem. 1996; 67:18401845.10 Wakimoto K, Kobayashi K, Kuro-o M, Yao A, Iwamoto T, Yanaka N, et al. Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem. 2000; 275: 3699136998.