欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    第十二章心血管系统药物.docx

    • 资源ID:2093696       资源大小:1.93MB        全文页数:66页
    • 资源格式: DOCX        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第十二章心血管系统药物.docx

    第十二章 心血管系统药物Drug Affecting the Cardiovascular System第一节 强心药、抗心律失常药物和抗心绞痛药物Cardiac Glycosides,Antianginal,and Antiarrhythmic Drugs一、 强心药物(Cardiac agents)心肌收缩力的严重损害可引起慢性心力衰竭,心脏不能将血泵至外周部位,无法满足机体代谢需要,这种心力衰竭称为充血性心力衰竭(Congestive Hearts Failure,CHF),CHF是一种常见病,其起因为心肌局部缺血、高血压、非阻塞性心肌病变及先天性心脏病等。强心药为可以加强心肌收缩力的药物,又称为正性肌力药。按产生正性肌力作用的途径,将强心药分类为如下四类: 抑制膜结合的Na、K-ATP酶的活性的强心苷类; -受体激动作用的-受体激动剂类; 激活腺苷环化酶,使cAMP的水平增高,从而促进钙离子进入细胞膜,增强心肌收缩力的磷酸二酯酶抑制剂; 加强肌纤维丝对Ca的敏感性的钙敏化药。1. 强心苷类强心苷类早在公元前1500年便作为药用,也是一种毒物。纯品的强心苷使用至今百余年。目前,仍是治疗心衰的重要药物。临床上应用的强心苷类的种类较多,主要有紫花洋地黄强心苷类、毛花洋地黄强心苷类、毒毛旋花子强心苷类、羊角拗强心苷类,夹竹桃强心苷类和铃兰强心苷类等。其中主要品种有洋地黄毒苷(Digitoxin)、地高辛(Digoxin)、毛花苷C(Lanatoside C)、毒毛花苷K(-Strophanthin-K)以及铃兰毒苷(Convallatoxin)。洋地黄毒苷毛花苷C毒毛花苷K铃兰毒苷这类药物的作用性质基本相似,不同点在于起效速度、作用强度和作用持续时间。其主要缺点是安全范围小、强度不够大。另外在吸收、消除途径及速度等方面也有的缺陷。强心苷的作用机理:心肌细胞浆内Ca2+是触发心肌兴奋-收缩偶连联的关键物质,胞浆内游离Ca2+能和肌钙蛋白(tropinin)结合,解除向肌球蛋白(tropomysin)对肌动蛋白(actin)和肌球蛋白(myosin)相互作用的抑制,从而肌动蛋白在横桥间滑动,把化学能转化为机械能。强心苷能升高胞浆内Ca2+游离,其时相和动作电位改变与收缩张力提高平行。这种作用被认为与强心苷抑制细胞膜Na+-K+ATP酶有关,Na+-K+ATP酶又称为钠泵,对于维持细胞内外的离子梯度有重要的作用,它能利用水解释放的能量,使3 Na+个逆浓度梯度主动转运出细胞外,2个K+主动转运进入细胞内。Na+-K+ATP酶受到抑制时,细胞内Ca2+游离浓度升高,Na+/Ca2+交换加强,从而使进入细胞内的Ca2+增多,细胞浆内游离Ca2+的小量增多可触发Ca2+从内浆网释放。所以强心苷药物对Na+-K+ATP酶都有选择性抑制作用。强心苷类药物同其他苷类药物类似,即由苷元和糖两部分组成,但强心苷类与其他苷类药物的区别明显是在强心苷类药物分子中,环A-B和C-D之间为顺式稠合,而环B-C为反式稠合,这种绸合方式决定其分子的形状是以U型为特征,分子中位于C-10和C-13的两个甲基与3位羟基均为-构型,3位羟基通常与糖相连接。而14位的-羟基通常为游离。在17位的内酯环也是此类药物的特征之一,自然界存在此类药物通常为五元环, 而在动物体内则为六元环。前者又称为卡烯内酯(Cardenolide),后者蟾二烯羟酸内酯(Bufadienolide),C17位上的内酯环的构型对其活性也有影响,-构型活性降低,另外双键被饱和,则活性也降低。卡烯内酯 蟾二烯羟酸内酯强心苷的糖多连接在3位的羟基上,这些糖多为D-葡萄糖(D-Glucose)、D-洋地黄毒糖(D-Digitoxose)、L-鼠李糖(L-Rhamnose)以及D-加拿大麻糖(D-Cymacose)。- D-葡萄糖 - D-洋地黄毒糖 - L-鼠李糖 -D-加拿大麻糖糖的连接方式多为-1,4-苷键,有些糖会以乙酰化的形式出现,由于改变苷的脂溶性,所以对药物代谢动力学有很大影响。强心苷中的糖苷基并不具有强心作用,但它却可以改变配糖基的作用,3位羟基上的糖越少其强心作用越强。而糖苷基与配糖基相连的键为-体或-体对活性无影响。强心苷的结构与活性的关系研究表明:17-位的,-不饱和内酯环和甾体环对于的酶抑制是非常重要的,饱和的内酯环活性较低,但此内酯环也可以被立体、电性与内酯环相似的开链不饱和腈取代,其活性还有所提高。研究表明;17位的羰基氧或腈基的氮对于在心肌上Na+,K+-ATP酶的相互作用是至关重要的。另外,强心苷分子的甾环部分对于其活性的贡献也是必不可少的,单独,-不饱和内酯环是无强心作用的,特别甾核的四个环的结合方式,尤其是C-D环的顺式是至关重要的。在甾核上的其他位置引入羟基,如在C1,C5,C11,C12和C16等位置可以增加强心苷的极性,口服时其吸收率降低,因此强心作用持续较短。若当羟基酯化后,口服生效速度较快,蓄积时间长。但静脉注射的强心作用较游离的羟基化合物弱。C19甲基被氧化为羟甲基或醛基时则增强活性,若再进一步氧化为羧基,则显著地降低活性。若以氢置换C19甲基,活性也显著降低。若将强心苷水解成苷元后,水溶性减小,正性肌力作用明显减弱,苷元脂溶性增大易进入中枢神经系统,产生严重的中枢毒副作用,因此苷元不能作为治疗药物。地高辛Digoxin化学名为(3,5,12)-3-(O-2,6-脱氧-D-核-己吡喃糖基-(14) O-2,6-二脱氧-D-核-己吡喃糖基-(14)-2,6-二脱氧-D-核-己吡喃糖基)氧代-12,14-二羟基卡-20(22)烯内酯 (3,5,12)-3-(O-2,6-Dideoxy-D-ribo-hexopyranosyl-(14)-O-2,6-dideo-xy-D-ribo-hexopyranosyl-(14)-2,6-dideoxy-D-ribo-hexopyranosyl)oxy-12,14-dihydroxycard-20(22)-enolide地高辛为透明白色结晶性粉末,味苦,难溶于水和醚,易溶于吡啶,微溶于烯醇和氯仿。地高辛在体内可迅速吸收并分布组织中,其生物利用度约60%80%,治疗血药浓度为0.5ng/ml1.5ng/ml,而中毒血药浓度为2ng/ml。因此,对该药的生物利用度严格控制。该药由尿中排谢的主要为原型,而且比洋地黄毒苷排谢快,静脉1mg注后,在24h内尿排出剂量为26.8%,其中93.9%为地高辛原型,剂量的14.8%从粪便中排谢,主要为代谢产物,其中之一为地高辛失去一分子糖产生的双洋地黄毒糖异羟洋地黄毒苷。地高辛临床上主要用于治疗急性或慢性心力衰竭,尤其对心房颤动及室上性心动过速有利,不宜与酸、碱类药物配伍。2. -受体激动剂类-受体激动剂为另一类在临床上使用的强心药物,心肌上的肾上腺素受体多为1-受体,当兴奋1-受体时,可产生一个有效的心肌收缩作用,其机理在于能激活腺苷环化酶,使ATP转化为cAMP,促进钙离子进入心肌细胞膜,从而增强心肌收缩力。然而,大多数的肾上腺素激动剂由于可加速心率和产生血管收缩作用,限制了治疗心衰的价值。临床上治疗心衰使用的肾上腺素1-受体激动剂为多巴胺衍生物。多巴胺(Dopamine)为去甲肾上腺素的前体,因此,尽管本身具有强的兴奋1-受体作用,但仍具有一些不良作用。然而,多巴胺的衍生物却保持了强心作用并且对心率、动脉收缩及心律失常的影响较小。多巴酚丁胺(Dobutamine)为此类药物的代表,它为心脏1-受体选择激动剂。虽有轻微的受体兴奋作用,但主要为兴奋1-受体,用于治疗心衰。 多巴胺丁胺 异波帕胺地诺帕明但由于在体内可经儿茶酚-O-甲基转移酶(Catechol-O-mehtyltransferase,COMT)被代谢,所以仅限注射剂。为解决其口服问题,对多巴酚丁胺进行一些结构修饰,得到如异波帕胺(Ibopamine)、地诺帕明(Denopamine)、多培沙明(Dopexamine)及布托巴胺(Butopamine)等。 多培沙明 布托巴胺非多巴胺衍生物的-受体激动剂,主要有扎莫特罗(Xamoterol)和普瑞特洛(Prenalterol)。扎莫特罗具有对心脏选择性兴奋作用,当交感神经功能低下时,可产生正性肌力作用和正性频率作用,而当交感神经亢进时,可产生负性肌力作用。适用于对使用普萘洛尔等其它-受体阻断剂可能在休息时就会产生心肌抑制或心动过速的中速心衰病人。普瑞特洛是选择性的心脏1-受体激动剂,对肺与血管2-受体则无明显兴奋作用,用于治疗伴有心肌梗塞的心力衰竭治疗。 扎莫特罗 普瑞特洛 3. 磷酸二酯酶抑制剂磷酸二酯酶抑制剂(Phosphodiesterase,PDE)为与强心苷类不同的作用靶点的强心药。其作用为水解和灭活cAMP和cGMP,目前已经发现7种同工酶,其中PDE-型位于细胞膜,活性也高、选择性强,为心肌细胞降解cAMP的主要亚型,抑制PDE-的活性,将明显减少心肌细胞cAMP降解而提高cAMP含量。因此,将研究强心药的靶点集中在PDE-。1978年,氨力农(Amirinone)作为磷酸二酯酶抑制剂第一个在临床上使用。此类药物对心脏有正性肌力作用,对血管平滑肌和支气管平滑肌有松弛作用,对血小板聚集有抑制作用,并能增加心排出量,减轻前后负荷,缓解CHF症状。但氨力农仅限于洋地黄等药物治疗无效的住院患者心衰时短期治疗。限制其临床应用的原因是副作用较多,主要为血小板下降,肝酶异常,心律失常及严重低血压等。米力农(Milrinone)是氨力农的同系物,对PDE-选择性更高,强心活性为氨力农的1020倍,不良反应很少,且口服有效,但仍有致心律失常的潜在危险。依洛昔酮(Enoximone)是咪唑酮类衍生物,为PDE-强效选择性抑制剂,主要代谢为亚砜衍生物和痕迹量的酮。二者均有较母体弱的强心活性。本品可长期口服,耐受性良好。匹罗昔酮(Piroximone)为依洛昔酮的类似物,但作用比后者强510倍。 氨力农 米力农 依洛昔酮 匹罗昔酮二、抗心律失常药物(Antiarrhythmic Drugs)心律失常是心动规律和频率异常,此时心房心室正常激活和运动顺序发生障碍。心律失常分为心动过速和心动过缓型两种,心动过缓可用阿托品或异丙肾上腺素治疗,见有关章节。这里仅介绍用于心动过速型疾病的抗心律失常药物。1. 抗心律失常药物的作用机理心脏电生理活动的正常节律受到很多因素的影响。起搏细胞功能失调或房室节传导阻滞都可以引起心律失常。一些疾病如动脉粥样硬化、甲状腺机能亢进以及肺病都可能是诱发因素。心律失常可由冲动形成障碍和冲动传导障碍或二者兼有所引起。心肌细胞的静息膜电位,膜内负于膜外约-90mV,处于极化状态。心肌细胞兴奋是哦,发生除极和复极,形成动作电位。它分为5个时相,0相为除极,是Na+快速内流所致。1相为快速复极初期,由K+短暂外流所致。2相平台期,缓慢复极,由Ca2+及少量Na+经慢通道内流与K+外流所致。3相为快速复极末期,由K+外流所致。0相至3相的时程合为称为动作电位时间(actionpotential duration,APD)。4相为静息期,非自律细胞中膜电位维持在静息水平,在自律细胞则为自发性舒张期除极,是特殊Na+内流所至,其通道在-50mV开始开放,它除极达到阈电位就重新激发动作电位。复极过程中膜电位恢复到-60mV-50mV时,细胞才对刺激发生可发生扩布的动作电位。从除极开始到这以前的一段时间即为有效不应期(effective refractory period,ERP),它反映快钠通道恢复有效开放所需要的最短时间,其时间长短一般与AOD的长短变化相应,但程度可有所不同。一个APD中,ERP数值大,就意味着心肌不起反映的时间延长,不易发生快速性心律失常。抗心律失常药物的作用机理,主要是通过影响心肌细胞膜的离子通道,改变粒子流而改变心肌细胞的电生理特征,其途径主要有以下四种:降低自律性药物抑制快反应细胞4相Na+内流或抑制慢反应细胞4相Ca2+内流就能降低自律性。药物促使K外流,增大最大舒张电位,使其较远离阈电位,也降低自律性。减少后除极与触发活动早后除极的发生与Ca2内流增多有关,因此钙拮抗剂药物对之有效。迟后除极所致的触发活动与细胞内Ca2+过多和短暂Na+内流有关,因此钙拮抗剂药物和钠通道阻滞药对之有效。改变膜反应性而改变传导性增强膜反应性改善传导或减弱膜反应性,而减弱传导都能取消折返激动,前者因改善传导而取消单向阻滞,因此,停止折返激动,某些促K+外流加大最大舒张电位的药物如;苯妥英钠有此作用;后者因减慢传导而使单向传导阻滞发展成双向传导阻滞,从而停止折返激动,某些抑制Na+内流的药如奎尼丁有此作用。改变有效不应期及动作电位时程而减少折返2. 抗心律失常药的分类依于Vaugha Williams通常将抗心律失常药分为四类:I类为钠通道阻滞剂,I类还可进一步分为IA、IB、IC三类;类为-受体阻断剂;III类为延长动作电位时程药物;类为钙拮抗剂。抗心律失常药物的作用及分类分类典型药物作用IA、奎尼丁、普鲁卡因胺、丙吡胺降低去极化最大速率,延长动作电位时间IB利多卡因、妥卡尼、美西律降低去极化最大通量,缩短动作电位时间IC氟尼卡降低去极化最大速率,对动作电位时间无影响普萘洛尔抑制交感神经活性III胺碘酮、托西溴苄胺、索他洛尔抑制钾离子外流,延长心肌动脉电位时程维拉帕米抑制钙离子缓慢内流IA类抗心律失常药物 奎尼丁(Quinidine)是此类药物中最早被发现并应用于临床,用于治疗阵发性心动过速、心房颤动和早搏的药物。临床上使用的IA类还有局麻药的普鲁卡因(Procaine)及普鲁卡因胺(Procainamide)、丙吡胺(Disopyramide)和西苯唑啉(Cibenzoline)。普鲁卡因虽 奎尼丁 双氢奎尼丁 普鲁卡因胺显活性,但由于易水解,不宜口服,所以使用同系物普鲁卡因胺,它的作用与奎尼丁相似,但更为安全,既可口服也可注射给药。丙吡胺为广谱抗心律失常药,其作用和用途与奎尼丁相似,但对某些奎尼丁无效的病例亦有效,副作用小,故认为可以代替奎尼丁和普鲁卡因酰胺。西苯唑啉既可口服,又可注射,疗效准确,副作用少,优于奎尼丁和普鲁卡因酰胺。吡美诺(Pirmenol)为近年来开发的较好的IA 类抗心律失常药,能减慢心房、心室肌和特殊传导系统的传导速度,延长心房和心室复极,可口服或注射给药,吸收完全,抗心律失常谱宽,安全范围大,不良反应少。 丙吡胺 西苯唑啉 吡美诺奎尼丁Quinidine化学名为(9S)-6-甲氧基辛可宁-9-醇(9S)-6-Methoxycinchonan-9-ol)。奎尼丁游离碱为白色无定形粉末,味苦。微溶于水,溶于乙醇、乙醚、氯仿,奎尼丁硫酸盐为白色针状结晶见光变暗,溶于水、沸水、乙醇、氯仿,不溶于乙醚。在不同的溶剂中,其比旋度不同,a+212°(95%乙醇),a+260°(HCl)其游离碱的pka15.4,pka210.0。1%的硫酸盐水溶液的pH6.06.8。奎尼丁是从金鸡纳树皮中发现的生物碱之一,与奎宁为非对映体。奎尼丁分子中有两个氮原子,其中奎宁环的叔氮原子碱性较强。可制成各种盐类应用,常用的有硫酸盐、葡萄糖酸盐、聚半乳糖醛酸盐等。口服时这些盐都有较好的吸收(大约95%),由于硫酸盐水溶性小,只适宜于制作片剂。而葡萄糖酸盐则水溶性大、刺激性少适于制成注射液,但在临床上奎尼丁的注射液使用较少。双氢奎尼丁(Dihydroquinidine)为将分子中的双键氢化的衍生物。与奎尼定具类似的药效和药代动力性质,但毒性稍大。从金鸡纳树皮中发现的生物碱还有奎宁和脱甲氧基衍生物辛可宁和辛可尼丁。它们各具有4个不对称碳原子,其中两个不对称碳原子的立体化学相同,奎尼丁(8R,9S)是右旋体,奎宁(8S,9R)是左旋体,其它两个异构体是表奎宁(8S,9S)和表奎尼丁(8R,9R),自然界存在量极少。奎尼丁和奎宁一样有抗疟作用,但奎尼丁对心脏传导的影响较大,对房颤病人的抗心律失常效力比奎宁和辛可尼丁大2倍。奎尼丁的硫酸盐和葡萄酸盐的生物利用度约为8085%和7075%。吸收后约85%与血浆蛋白结合,半衰期为6小时。其代谢主要发生在肝脏,代谢产物主要有2-羟基奎尼丁、O-去甲基奎尼丁和乙烯基氧化物。 2-羟基奎尼丁 O-去甲基奎尼丁 乙烯基氧化物奎尼丁抑制钠通道的开放,延长通道失活恢复所需时间,降低细胞膜的钠离子通透性而起作用,但不明显影响钾和钙离子的通透。临床用于治疗心房颤动,阵发性心动过速和心房扑动。但大量服用奎尼丁可发生蓄积而中毒。奎尼丁可抑制地高辛在肾小管的排谢,导致地高辛在血浆中浓度增加。奎尼丁的分子中含有4个手性碳,因此其化学合成难度较大,在1944年由Woodward首次合成。普鲁卡因胺 Procainamide化学名为4-氨基-N-2-(二乙胺)乙基苯甲酰胺盐酸盐。 4-Amino-N-2-(diethylamino)ethylbenzamide monohydrochloride。又名奴氟卡因胺。 本品为白色或淡黄色结晶性粉末,有引湿性,在水中易溶,在乙醇中溶解,在氯仿中为溶,在乙醚中不溶。1%水溶液pH为5.06.5,mp.165169。普鲁卡因胺源于发现局麻药物普鲁卡因具有短效的抗心律失常作用,但由于普鲁卡因的中枢毒性、作用时间短以及由于在体内迅速的水解和酶解不能口服的缺点,限制其在此方面的临床价值。因此将酯基以其电子等排体酰胺基置换得到了普鲁卡因胺。它对血浆的酯酶和化学水解都比较稳定,因此可以口服,生物利用度可达7080%。体内代谢主要发生在肝脏,其产物为对氨基苯甲酸和有肝脏中的N-乙酰基转移酶催化生成N-乙酰基普鲁卡因胺,后者为活性代谢物,被称为乙酰卡尼具有抗心律失常活性,属于III类抗心律失常药物。这种乙酰化作用受基因调控,因此存在个体差异。用于治疗阵发性心动过速、频发早搏,心房颤动和心房扑动、快速型室性和房性心律失常。IB类抗心律失常药物 属于IB类抗心律失常药物主要有利多卡因(Lidocaine)、美西律(Meixletine)、妥卡胺(Tocainide)和苯妥英(Phenytoin)。前三种药物即是钠通道阻滞剂,也是局部麻醉药。临床上可以治疗各种室性心律失常。这种治疗作用的二重性与其作用机制相似、作用部位不同所形成的。利多卡因是一个安全有效的药物,口服后很快被肝脏破坏,故一般经静脉给药。 利多卡因 美西律 妥卡胺 苯妥英妥卡胺可以口服用于治疗室性早博,优点是无明显负性肌力作用,致性律失常作用小,也比较安全,容易被肝脏代谢破坏。苯妥英能抑制洋地黄中毒时所出现的触发活动,并可改善洋地黄中毒时伴发的传导阻滞,故成为洋地黄中毒而致心律失常的首选药物。IC类抗心律失常药物 IC类抗心律失常药物降低去极化最大速率,对动作电位时间无影响。其代表药物氟卡尼(Flecainide),氟卡尼为代表Ic类药物特点是具有强的钠通道抑制能力,对心肌自律性及传导性有强的抑制作用,明显延长有效不应期,在消除冲动形成及传导异常上均有作用,消失室性早博的效率很强。恩卡尼(Encainide)为其同类药物,适用于持续性心动过速,亦用于有症状的非持续性室性心动过速和频发室性早搏复合波患者。普罗帕酮(Propafenone)对心肌传导细胞有局部麻醉作用和膜稳定作用,由于结构中含有-受体阻断剂的结构片断,所以有一定程度的-受体阻滞活性并还具有钙拮抗活性。氟卡尼 恩卡尼 莫雷西嗪 普罗帕酮莫雷西嗪(Moricizine)是一新的抗心律失常药物,化学结构与冠脉扩张剂氯吩嗪相似,也有中度扩张作用和解痉作用等。兼有IB和IC类抗心律失常的特性。主要作用是加速复极的第2,3位相,从缩短动作电位时间和延长有效不应期,用于治疗房性和室性早搏,阵发性心动过速,心房颤动或扑动。禁忌症为心脏传导严重障碍、严重低血压及肝、肾功能不全。 醋酸氟卡尼Flecainide Acetate化学名为(±)N-(2-哌啶基甲基)2,5-双(2,2,2-三氟乙氧基)苯甲酰胺(±)-N-(2-piperidinyl methyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide)。氟卡尼为白色颗粒状固体,无臭,mp. 105107,因结构中含有六氢吡啶环。碱性比较强,既能和盐酸成盐也能和醋酸成盐,药用醋酸盐,醋酸氟卡尼为白色结晶固体,mp.145147(其盐酸盐mp.222225)解离常数pKa9.3。能溶于水,在乙醇中溶解度更大(300mg/ml,37)。氟卡尼有两种光学异构体,R型为左旋-3.30°(甲醇),mp.102104,其盐酸盐-20.0°,S型为右旋+3.4°(甲醇),mp.104105,其盐酸盐+20.0°。醋酸氟卡尼为广谱的抗心律失常药,有稳定心肌细胞膜,延长复极化作用,用于抑制和控制室和室上心律失常,而对房性心律过速也是有效的,口服后,在胃肠道能迅速吸收完全,生物利用度达到8590%。首过代谢也很微弱。在体内广泛分布包括心膜在内的许多器官中。但只有极少量进入中枢,消除半衰期大约为19h,尿液pH值能影响消除速度,碱性(pH7.28.3)延长作用时间,酸性(pH4.45.8)则缩短作用时间。该类药物的也有相当严重的致心律失常作用,甚而导致罕见的不能复苏的室性心动过速或纤维性颤动,经大规模实验调查后发现氟卡尼有明显增加心肌梗死后病人的死亡率。普罗帕酮(Propafenone)化学名为1-2-2-羟基-3-(丙胺基)丙氧基苯基-3-苯基-1-丙酮1-2-2-Hydroxy-3-(propylamino)propoxyphenyl-3-phenyl-1-propanone。 本品为白色结晶,无臭,味苦。mp. 171174。溶于乙醇、四氯化碳和热水,略溶于冷水,不溶于乙醚。普罗帕酮可抑制心肌Na+、K+内流,具有膜稳定作用,可降低快反应、慢反应动作点为O和4相除极速率,降低心房和心室的兴奋性,降低自律性和抑制房室结的传导性。由于结构中含有-受体阻断剂的结构片断,所以有一定程度的-阻滞活性并还具有钙拮抗活性。因其具有两个对映的旋光异构体(R)和(S),在药效和药物代谢动力学方面存在明显的立体选择性差异,两者均具有钠通道阻滞作用,但(S)型异构体的-受体阻断作用是(R)型异构体的100倍,单次应用(S)型体和(R)型体时,(S)型异构体的代谢清除率大于(R)型异构体。但长期应用消旋体的制剂后,(S)型体的代谢清除率又小于(R)型体,这归于在体内的光学异构体的相互作用。(R)型异构体通过竞争CYP2D6减慢(S)型异构体的代谢,(S)型异构体在体内的消除减少,而(R)型异构体的消除增大,(R)型异构体竞争性抑制(S)型异构体的体内消除。这归于两异构体在体内氧化过程均由细胞色素P450D6酶所介导,(R)型异构体与(S)型异构体均与细胞色素P450D6酶结合并发生相互抑制作用,但(R)型异构体对酶的亲和力大于(S)型异构体,所以先于与酶的结合位点作用,其自身代谢有所加强,减少(S)型异构体与酶的结合机率,从而使(S)型异构体的消除减慢,血药浓度增加。 普罗帕酮的合成是以苯甲酸乙酯为起始原料,再三氯化铝重排,与苯甲醛反应,催化氢化将其分子中双键还原,在与环氧氯丙烷反应,按-受体阻断剂合成方法进行。口服吸收完全,肝内迅速代谢,代谢产物为5-羟基丙胺苯丙酮,也有抗心律失常作用。普罗帕酮临床上用于室性或室上性异位搏动和心动过速,预激综合征等。钾通道阻断剂钾通道阻断剂也被称为类药物,它可使APD延长效应,这主要取决于对各种钾外流通道的抑制作用。这类药物的作用原理是选择作用于心肌延迟整流钾通道,延长动作电位的时程,既二期(平台)的延长。胺碘酮(Amiodarone)为其代表药物,它属于苯并呋喃衍生物,为改造具有解痉和扩冠作用的天然产物凯林结构时获得的,主要作用是延长房室结、心房肌和心室肌的动作电位时间和有效不应期。胺碘酮还有抗颤动作用。对其它抗心律失常药无效的顽固性阵发性心动过速常能奏效。 凯林 溴苄铵临床上使用的同类药物,还有溴苄铵(Bretylium tosylate)、氯非铵(Clofilium),索他洛尔(Sotalol)和N-乙酰普鲁卡因胺(N-Acetyl procainamide)等。这类药物的电生理特点是延长心肌细胞动作电位时程,从而延长有效不应期。但不影响传导及最大除极速率,并能够使传导循环中的折返兴奋到心肌组织时,组织仍处于不应期,从而使心律失常消失,恢复窦性心律。这类药物被称为延长动作电位时程药物,又称复极化抑制药,进一步研究表明这类药物作用机制是抑制钾通道。氯非铵 索他洛尔盐酸胺碘酮Amiodarone Hydrochloride化学名为(2-丁基-3-苯并呋喃基)4-2-(二乙氨基)乙氧基-3,5-二碘苯基甲酮盐酸盐(2-Butyl-3-benzofuranyl)4-(2-(diethyl amino) ethoxy)-3,5-diiodophenyl methanone hydro-chloride)。胺碘酮为类白色或淡黄色结晶粉末,无臭无味。易溶于氯仿、甲醇,溶于乙醇,微溶于丙酮、四氯化碳、乙醚,几乎不溶于水,pKa6.56(25)。mp.156158虽然固态的胺碘酮盐酸盐较为稳定,但应避光密闭贮藏。在水溶液(包括pH=7.4的磷酸缓冲液)则可发生不同程度的降解,而它的有机溶液(如甲醇、乙醇、乙腈、氯仿等)的稳定性比水溶液好。胺碘酮口服吸收慢,生物利用度约为30%,蛋白结合率高达95%,因此起效极慢,一般在一周左右才出现作用,体内半衰期平均25天,体内分布广泛,可蓄积在多种器官和组织内。其电生理作用是延长心房肌,心室肌及传导系统的动作电位时程和有效不应期。该药上个世纪60年代用于治疗心绞痛,70年代用于治疗心律失常,为广谱抗心律失常药物。另外胺碘酮对、受体也有非竞争性阻断作用。对钠、钙通道均有一定阻滞作用。胺碘酮的主要代谢物为去乙基胺碘酮,与胺碘酮有类似药理作用。胺碘酮的合成是以苯并呋喃为起始原料,与丙酸酐进行酰化反应,经黄明龙反应将酮羰基还原,再进行傅克反应在苯并呋喃的2位上引入对甲氧基苯甲酰基,利用其甲氧基对苯核活化作用,引入3、5位的碘,经氧烃化反应得胺碘酮。长期使用本品有皮肤色素沉积,眼角膜亦可发生微弱沉着,因与甲状腺素有相似的结构,顾客引起甲状腺功能紊乱。大剂量用药,少数病例可发生低血压、心力衰竭等。类-受体阻断剂和类钙离子拮抗剂-受体阻断剂具有较好的抗心律失常作用,约占所有抗心律失常药物数目的一半,为抗心律失常的重要药物。这类药物还有良好的抗高血压和抗心绞痛作用。详见第十一章许多钙离子拮抗剂是抗心律失常药的良药,临床上常用的是维拉帕米,地尔硫卓和苄普地尔。将在本章其他节介绍。三、抗心绞痛药物 (Antianginal Drugs)缺血性心脏病的主要症状为心绞痛,其原因多为冠状动脉粥样硬化引起的心肌缺血的短暂发作。其病理生理基础为氧的供需平衡失调,心肌耗氧量增加、冠脉供氧不足或血携氧能力降低等均可诱发心绞痛的发作。因此治疗心绞痛的合理途径是增加供氧或降低耗氧。但目前已知有效的抗心绞痛药物主要是通过降低心肌耗氧量而达到缓解和治疗的目的。根据化学结构和作用机理,抗心绞痛药物可分为三类:硝酸酯基亚硝酸酯类;钙拮抗剂和受体阻断剂及其他类型的抗心绞痛药物。1. 硝酸酯基亚硝酸酯类硝酸酯及亚硝酸酯类是最早应用于临床的抗心绞痛药物。自1857年亚硝酸异戊酯(Amyl nitrite)引入临床以来,这类药物治疗心绞痛已有一百多年,尽管随着钙拮抗剂和受体阻断剂的发展,使心绞痛的治疗有了更多的选择,但硝酸酯及亚硝酸酯类仍为治疗心绞痛的可靠药物。本类药物都是醇或多元醇与硝酸或亚硝酸而成的酯,目前在临床上使用的已超过10种。最早的亚硝酸异戊酯因其副作用多,现已少用。目前临床上使用此类药物主要有硝酸甘油(Nitroglycerol)、丁四硝酯(Erythrityl tetranitrate)、戊四硝酯(Pentaerythritol tetranitrate)、硝酸异山梨醇酯(Isosorbide tinitrate)、其代谢产物单硝酸异山梨醇酯(Isosorbide mononitrate)以及甘露六硝酯(Mannitol hexanitrate)。除了有机硝酸酯类外,还有吗多明(Molstdomine)和硝普钠(Sodium Nitroprusside)等。硝酸甘油 亚硝酸异戊酯 丁四硝酯戊四硝酯 硝酸异山梨酯硝酸酯类药物通过生物转化形成一氧化氮(NO),NO具有高度的脂溶性,能通过细胞膜,激活鸟苷酸环化酶,使细胞内cGMP的含量增加,激动依赖性的蛋白激酶引起相应底物的磷酸化状态的改变,结果导致肌凝蛋白轻链去磷酸化。由于肌凝蛋白轻链去磷酸化过程调控平滑肌细胞收缩状态的维持,因此,松弛血管平滑肌。现已证明,NO既为内皮衍生的松驰因子(EDRF)在冠状粥样硬化以及急性缺血时,EDRF释放减少,外源性硝酸酯可以补充内源性NO的不足,这些非内皮依赖性的NO供体,对冠状动脉病变处于痉挛状态血管的松驰作用远远强于对正常血管段的作用。硝酸酯类药物作用机理硝酸酯类药物连续用药后可出现耐受性。耐受性的发生可能关于“硝酸酯受体”中的巯基被耗竭有关,给与硫化物还原剂能迅速反转这一耐受现象。若应用硝酸酯类药物的同时,给与保护体内硫醇类的化合物1,4-二巯基-3,3-丁二醇,就不易产生耐药性。硝酸酯的作用比亚硝酸酯强,则可能由于前者较易吸收。硝酸酯及亚硝酸酯都易经粘膜或皮肤吸收,口服吸收较好,大经肝脏首过效应后大部分已被代谢,因此血药浓度极低。其药物代谢动力学特点是吸收快,起效快。本类药物在肝脏被谷胱甘肽、有机硝酸酯还原酶降解,脱去硝基成为硝酸盐而失效,并与葡萄糖酸结合,经肾排泄。主要为肾脏排泄,其次为胆汁排泄。各种硝酸酯类药物的起效时间、最大有效时间和作用时程的关系药物起效时间(min)最大有效时间(min)作用时程(min)亚硝酸异戊醇0.250.51硝酸甘油2830硝酸异山梨醇酯31560四硝酸赤藓醇酯1532180硝酸异戊四醇酯2070330有机硝酸酯药物主要用于治疗心绞痛,也能治疗哮喘胃肠道痉挛,但这种情况并不多见。其副作用有时也可引起偏头痛。 硝酸甘油Nitroglycerin化学名为1,2,3-丙三醇三硝酸酯 (1,2,3-Propanetriol trinitrate)。硝酸甘油为浅黄色无嗅带甜味的油状液体,bp.145,在低温条件下可凝固成为两种固体形式,一种为稳定的双棱形晶体mp.13.2,在某些条件下,形成不稳定的三斜晶形,mp.2.2,这种易变晶形可转变为稳定的晶形,硝酸甘油溶于乙醇,混溶于热乙醇、丙酮、乙醚、冰乙酸、乙酸乙酯、苯、氯仿、苯酚,略溶于水(1.73mg/ml,20)。硝酸甘油有挥发性,导致损失,也能吸收水分子成塑胶状。因具有爆炸性,而不宜以纯品放置和运输。硝酸甘油舌下含服能通过口腔粘膜迅速吸收,直接进入人体循环可避免首过效应,血药浓度很快达峰,12min起效,半衰期约为42min。在肝脏硝酸甘油经谷胱苷肽还原酶还原为水溶性较高的二硝酸代谢物、少量的单硝酸代谢物和无机盐,前者仍有其扩张血管作用。但作用仅为硝酸甘油的1/10。脱硝基的速度主要取决于谷胱苷肽的含量,谷胱苷肽的消耗可导致快速耐受性。在体内代谢生成的1,2甘油三硝酸酯,1,3甘油三硝酸酯,甘油单硝酸酯和甘油均可经尿和胆汁排出体外,也有部分甘油进一步转化成糖原,蛋白质,脂质和核苷参与生理过程,还有部分甘油氧化为二氧化碳排出到大气中。硝酸异山梨酯 Isosorbide Dinitrate化学名为1,4,:3,6-二脱水-D-山梨醇-2,5-二硝酸酯 1,4:3,6-dianhydro-D-sorbitol 2,5-dinitrate。又名硝异梨醇,消心痛。本品为白色结晶性粉末, mp. 6872。在丙酮或氯仿中易溶,在乙醇中略溶,在水中微溶。在室温下呈干燥状态,较稳定,但遇强热会发生爆炸。 本品具有爆炸性。硝酸异山梨酯的结晶有稳定型和不稳定型两种,药用为稳定性。两种晶型的其它理化性质相同。不稳定型在30放置数天后,即转为稳定型。本品干燥状态比较稳定,据报道45放置几个月,室温放置60个月未发生变化,但在酸、碱溶液中硝酸酯容易水解,在0.1molL盐酸中100加热1h,分解25,在0.1molL氢氧化钠溶液中100加热1h,分解45。硝酸异山梨酯口服生物利用度仅为3%,半衰期为30min,多数在胃肠道和肝脏被破坏,进入人体后很快被代谢为2-单硝酸异山梨醇酯和5-硝酸异山梨醇酯,两者均显其抗心绞痛活性,半衰期分别为1.82h和57.6h。正是由于5-硝酸异山梨醇酯的半衰期长,加之硝酸异山梨酯为二硝酸酯脂溶性大,易透过血脑屏障,有头痛的不良作用。现发展出的单硝酸异山梨醇酯(异山梨醇-5-硝酸酯)水溶性增大,副作用降低。硝酸异山梨酯的合成以山梨醇

    注意事项

    本文(第十二章心血管系统药物.docx)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开