点、直线、平面之间的位置关系复习ppt课件.ppt
第二章 点、直线、平面之间的位置关系复习,一 空间点、直线、平面之间的位置关系,1.平面的基本性质:,公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。,公理2:过不在同一直线上的三点,有且只有一个平面。,公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。,2.空间中直线与直线之间的位置关系:,如图:AB与BC相交于B点,AB与AB平行,AB与BC异面。,空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。,平行于同一条直线的两条直线互相平行。,公理4,等角定理:,3.空间中直线与平面之间的位置关系:,(1)直线在平面内有无数个公共点;(2)直线与平面相交有且只有一个公共点;,(3)直线与平面平行没有公共点。,4.平面与平面之间的位置关系:,(1)两个平面平行没有公共点;(2)两个平面相交有一条公共直线。,例题讲解,例1、根据图形,写出图形中点、直线和平面之间的关系,例3下列图形中,满足,的图形是(),(A)(B),(C)(D),例4一条直线和两条异面直线的一条平行,则它和另一条的位置关系是()(A)平行或异面(B)异面(C)相交(D)相交或异面,例5用符号表示“若A、B是平面a 内的两点,C是直线AB上的点,则C必在 a 内”,即是_,二 直线与平面平行的判定及性质,1.直线与平面平行判定定理,平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,2.直线和平面平行的性质定理,如果一条直线和一个平面平行,经过这条直线的任意平面和这个平面相交,那么这条直线和交线平行。,3、两个平面平行的判定,判定定理:一个平面内两条相交直线与另一个平面平行,则这两个平面平行,P,4.平面和平面平行的性质定理,如果两个平行平面同时和第三个平面相交,那么它们的交线平行,即:,例1.求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面,已知:空间四边形ABCD中,E,F 分别AB,AD的中点,求证:EF/平面BCD,例题讲练,例题2:,已知4:如图,,求证:CD/EF.,AB/CD,AB/EF,于是,CD/EF。,三 直线与平面垂直的判定及性质,1.直线与平面垂直判定定理,2.直线与平面垂直的性质,垂直于同一个平面的两条直线平行,2.平面与平面垂直的判定,一个平面过另一个平面的垂线,则这两个平面垂直.,由此图你能想到什么?,4.两个平面垂直的性质,定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,典型例题,例1、在正方体ABCD-A1B1C1D1中,求直线A1B和平面A1B1CD所成的角,O,例2:如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点,求证:,P,A,B,C,O,一些常用结论,1.三条两两相交的直线可确定1个或3个平面.,2.不共面的四点可确定4个平面.,3.三个平面两两相交,交线有1条或3条.,4.正方体各面所在平面将空间分成27个部分.,5.夹在两个平行平面之间的平行线段相等.,6.平行于同一个平面的两个平面平行.,7.垂直于同一条直线的两个平面平行.,9.如图,若PA=PB=PC,则O 是ABC的外心.,10.如图,若PA,PB,PC两两垂直,则O 是ABC的垂心.,11.如图,若点P到三边的距离相等(即PD=PE=PF),则O是ABC的内心.,8.共点的斜线段相等,则它们在同一平面的射影相等.,例3,求证:ACDE。,