植物生理学——植物的逆境生理ppt课件.ppt
第十二章 植物的逆境生理 Stress Physiology,芦苇,第一节 抗性生理基础,第二节 植物的抗寒性,第三节 植物的抗旱性,第四节 植物的抗盐性,重点,1.植物在逆境下形态结构与生理生化代谢变化,2.高低温对植物伤害及抗寒,耐热机理及途径,3.干旱,湿涝,盐碱对植物伤害及抗旱,抗涝,抗盐碱机理及途径,4.大气污染的种类及对植物伤害特点,5.抗逆生理与农业生产关系,掌握提高作物抗逆性途径,所有对植物生命活动不利的环境条件统称为逆境(Stress),第一节 抗性生理通论,1、逆境、胁迫(强)与胁变,逆境种类,物理的,如旱、涝、冷、热等;,化学的,如盐、碱、空气污染等;,生物的,如病、虫害等。,逆境生理(Stress physiology):研究逆境对植物伤害以及植物对逆境的适应与抵抗能力的科学。,一.逆境及植物的抗逆性,沙枣,胁迫(强)与胁变,随胁迫强度不同,胁变程度有差异,弹性胁变:程度轻,解除胁迫以后又能恢复的胁变称弹性胁变;,塑性胁变:程度重,解除胁迫以后不能恢复的胁变称塑性胁变。,塑性胁变严重时会成为永久性伤害,甚至导致死亡。,胁迫(强),借助物理学上概念,任何一种使植物体产生有害变化的环境因子称为胁迫(Stress),如温度胁迫、水分胁迫、盐分胁迫等。,在胁迫下植物体发生的生理生化变化称为胁变(Strain)。,胁变,Figure 22.23 A flooded maize field.Flooding in the US Midwest in 1993 resulted in an estimated 33%reduction in yield compared with 1992.,2.逆境伤害性质,1)直接伤害(direct stress injury),2)间接伤害(indirect stress injury),严重的逆境,短时间作用产生的对植物生命结构(蛋白质、膜、核酸等)的不可逆伤害。这时植物还来不及发生代谢上的改变。如高温烫伤、冰冻等。,较弱的逆境,长时间作用,可以把原来的弹性胁变转化为塑性胁变,造成伤害。主要是代谢紊乱。,3.植物对逆境的适应与抵抗,抗性=胁强/胁变,植物对逆境的适应与抵抗能力,称为抗逆性(hardiness),植物抗逆性强弱取决于,遗传潜力,抗逆锻炼,指植物在逆境下,逐渐形成了对逆境的适应与抵抗能力。这一过程称为抗逆锻炼。,胡杨,大豆幼苗耐热性诱导实验,CK,40诱导后 生长在45 条件下,未进行高温诱导 直接生长在高温下,避性(escape),御性(avoidance),耐性(tolerance),但这种耐性有一定的限度。,植物对逆境的适应与抵抗方式,植物整个生长发育过程不与逆境相遇,逃避逆境危害。,植物具有防御逆境的能力,以抵御逆境对植物的有害影响,使植物在逆境下仍维持正常生理状态。(逆境排外),植物可通过代谢反应阻止、降低或修复由逆境造成的损伤,使其在逆境下仍保持正常的生理活动。(逆境存在于细胞内),二.植物在逆境下的形态变化和代谢特点,形态结构 干旱-叶片和嫩茎萎蔫,气孔开度减小甚至关闭;淹水-叶片黄化,枯干;根系褐变,腐烂 高温-叶片变褐,出现死斑,树皮开裂 病原菌侵染-叶片出现病斑,2 逆境协迫下植物的一般生理变化,1)逆境与植物的水分代谢 吸水能力降低,蒸腾量降低,组织产生萎蔫,3)呼吸作用变化 降低(冻害、热害)PPP途径增强 先升后降(冷害、旱害)增高(病害),4)物质代谢变化 合成分解,5)原生质膜变化 膜脂双分子层-星状排列,膜蛋白变构,膜透性增加,物质外渗。,6)蛋白质变化 新蛋白质-统称逆境蛋白(stress protein):热击蛋白(HSP),低温诱导蛋白等,2)光合速率下降,三 渗透调节(osmotic adjustment)与抗逆性,1.渗透调节的概念 胁迫条件下,细胞主动形成渗透调节物质,提高溶质浓度,适应逆境胁迫的现象。,2.渗透调节物质-两大类1)外界进入细胞的无机离子:K+,Na+,Ca 2+,Mg 2+,Cl-,SO4 2-,NO3-等(主动吸收累积在液泡)2)细胞内合成的有机物:a.脯氨酸(proline):最有效渗透调节物质之一,多种逆境下,植物体内都积累脯氨酸(尤其干旱,比原始含量增加几十几百倍),作为渗调物,保持膜结构完整性,外施Pro可解除高等植物的渗透胁迫,合成加强,内部脯氨酸氧化受到抑制,逆境下Pro积累原因,蛋白质合成减弱,抑制脯氨酸掺入蛋白质合成过程,b.甜菜碱(betaines)在抗逆性中也有渗透调节作用(季铵化合物N-甲基代氨基酸,R4 N.X)。水分亏缺或NaCI胁迫-积累甜菜碱(小麦、大麦、黑麦)c.可溶性糖 积累大量蔗糖,葡萄糖,果糖,半乳糖等 分子量小,易溶解;有机调节物在生理pH范围不带静电荷;能被细胞膜保持住;能使酶构象稳定;生成迅速,渗透调节物质特点,四.植物激素在抗逆性中的作用,1.ABA,(1)可能使生物膜稳定。(2)减少自由基对膜的破坏.(3)改变体内代谢.外施ABA,可使植物体增加脯氨酸,可溶性糖和可溶性蛋白质等的含量。(4)减少水分丧失,提高抗逆性原因,可归为 3 方面,ETH:增加几倍或几十倍,直接或间接地参与植物对伤害的修复或对逆境的抵抗过程,内源GA:活性迅速下降 CTK:含量减少,2.ETH与其他激素,干旱或盐处理-提高水稻幼苗的抗冷性低温处理-提高水稻幼苗的抗旱性 交叉适应作用物质-脱落酸,脱落酸在交叉适应(cross adaptation)中的作用,沙枣,五、提高作物抗性的生理措施,选育高抗品种是提高作物抗性的基本措施。1、种子锻炼 播种前对种子进行相应的逆境处理。2、巧施肥水 控制土壤水分,少施N肥,多施P、K肥。3、施用生长抑制物质 如CCC、PP333、TIBA、JA等,活性氧与环境胁迫保护酶(SOD POD CAT GPX GS PPO),(1)形态的改变,如叶的厚薄、大小、卷曲、角质化、蜡质化、气孔的变化等(2)生理活动变化,如光合,呼吸作用变化;水分生理(含水量下降,束缚水/自由水比值升高);原生质凝胶化等(3)渗透调节(渗透调节物质增多,如无机离子、脯氨酸、甜菜碱、可溶性的小分子化合物糖、氨基酸等),使植物在逆境下,能够保持水分平衡(4)植物激素变化,ABA,Eth增加;CTK,IAA,GA降低(5)交叉适应,(ABA)(6)逆境蛋白的产生,如热激蛋白,冷响应蛋白等的产生(7)活性氧清除,即植物逆境保护酶活性和含量提高(8)抗逆锻炼,小结,第二节 植物的抗寒性,低温对植物危害,冻害(freezing injury):冰点以下的低温使植物体内结冰,冷害(chilling injury):冰点以上低温对植物造成的伤害,抗寒性:植物对低温的适应与抵抗能力。,一、冻害与植物的抗冻性,(一)冻害,植物发生结冰的温度并不一定在0。有时温度降低到0以下仍然不结冰,这种现象称为过冷现象。但温度降低到一定程度一定结冰,这一点称为过冷点。,冰点高低与细胞液浓度有关,因此可以用测定冰点的方法来测定细胞液的渗透势。,(1)细胞间结冰及其伤害,冻害一般是由于结冰引起的。由于温度降低的程度与速度不同,结冰的类型不同,造成伤害的方式也不同。,(二)结冰伤害的类型及其原因,1.结冰伤害,结冰类型,细胞间结冰白菜,葱,细胞内结冰,温度缓慢下降时,细胞间隙中的水分结成冰,即所谓胞间结冰。,细胞间结冰伤害的主要原因,原生质发生过渡脱水,造成蛋白质变性和原生质不可逆的凝胶化;,冰晶体过大时对原生质造成机械压力,细胞变形;,当温度回升时,冰晶体迅速融化,细胞壁易恢复原状,而原生质却来不及吸水膨胀,原生质有可能被撕破。,(2)细胞内结冰伤害,胞内结冰伤害的主要原因-机械损伤(往往是致命),当温度骤然下降时,除细胞间隙结冰以外,细胞内水分也结冰,一般是原生质内先结冰,紧接着液胞内结冰,这就是胞内结冰。,1.硫氢基假说(Levitt,1962),要点:结冰对细胞伤害主要是破坏蛋白质空间结构。,冰冻时,原生质逐渐脱水,蛋白质分子相互靠近,相邻肽链外部的-SH彼此接触,两个-SH经氧化而形成-S-S-键;或者一个分子外部的-SH基与另一个分子内部的-SH形成-S-S-键,于是蛋白质凝聚。,当解冻吸水时,肽链松散,由于-S-S-键属共价键,比较稳定,蛋白质空间结构被破坏,导致蛋白质变性失活。,通过化学方法,如使用硫醇可以保护-SH不被氧化,起到抗冻剂的作用。,(二)结冰伤害机理,2膜伤害学说,膜对结冰最敏感。,低温对膜的伤害,膜脂相变,酶失活;,透性加大,电解质外渗。,主要破坏膜脂与膜蛋白。,(三)植物对冷冻的适应,1抗冻锻炼,在冬季来临之前,随着气温的降低与日照长度的变短,植物体内发生一系列适应冷冻的生理生化变化,以提高抗冻能力,这一过程称为抗冻锻炼。,3.机械伤害 4.活性氧伤害,2植物在适应冷冻过程中的生理生化变化,抗冻锻炼是植物提高抗冻性的主要途径。其中发生了许多适应低温的生理生化变化。,(1)含水量下降:自由水,束缚水相对增多;,(2)呼吸减弱:消耗糖分减少,有利于糖的积累;,(3)保护性物质增多:如糖、脯氨酸、甜菜碱积累。一方面降低冰点,另一方面保护大分子的结构与功能;,(4)内源激素变化:ABA,GA、IAA,在形态上也发生相应的变化,如形成种子、休眠芽、地下根茎等,进入休眠状态。,3外界条件对植物适应冷冻的影响,(1)温度,(2)日照长度,(3)水分,(4)矿质营养,进入秋季,温度降低-抗寒性增强;春季温度升高时,抗寒性降低,-影响休眠-抗寒性短日照-促进休眠-抗寒性增强;长日照-阻止休眠-抗寒性降低,细胞吸水过多,不利于抗寒性增强,充足,生长健壮,利于越冬,抗寒性增强;不宜偏施氮肥,造成徒长,抗寒性降低,二、冷害与冷害的机理,冷害虽然没有结冰现象,但会引起喜温植物的生理障碍。,三种类型,直接伤害,间接伤害,次生伤害,短时间内发生的伤害。主要特征:质膜透性增大,导致细胞内含物向外渗漏-出现伤斑。,缓慢降温引起的,低温胁迫可持续几天乃至几周。主要特征:代谢失调组织柔软,萎蔫。,某器官因低温胁迫而导致其生理功能减弱或丧失而引起的伤害。如根系吸水变慢。,(一)冷害引起的生理生化变化,2水分平衡失调,3原生质流动受阻,4光合速率减弱,5呼吸代谢失调,6.有机物质分解占优势,蒸腾大于吸水,能量供应减少,原生质粘性增加,叶绿素分解大于合成;暗反应受影响,大起大落。先期升高保护,然后降低(升高放热保护,时间长后,原生质停止流动,无氧呼吸),1膜透性加大,(二)冷害机理,1膜透性增加引起代谢紊乱,2膜相变引起膜结合酶失活,在低温下,质膜收缩出现裂缝,造成膜破坏,透性增加,细胞内溶质渗漏。如时间过长还可引起酶促反应平衡失调,代谢紊乱。,构成膜的类脂由液相转变为固相,流动镶嵌模型破坏,类脂固化而引起膜结合酶解离或者使酶亚基分解,因而失活。,膜相变温度随不饱和脂肪酸含量增加而降低,抗冷性指标,(三)提高植物抗冷性的途径,1抗冷锻炼,将植物在低温条件下经过一定时间的适应,提高其抗冷能力的过程。,经过锻炼的植物,其膜脂的不饱和脂肪酸含量增加;相变温度降低;膜透性稳定。,2化学诱导,化学药物可诱导植物抗冷性提高CTK,ABA等。,3合理的肥料配比,4.栽培技术-如塑料薄膜覆盖,使植物生长健壮。,第三节 植物的抗旱性,旱害及其类型,旱害(drought injury),干旱类型,大气干旱:空气相对湿度过低;,土壤干旱:土壤中缺少可利用水。,植物对干旱的适应与抵抗能力称为抗旱性。,土壤水分缺乏或者大气相对湿度过低,植物的耗水大于吸水,造成植物组织脱水,对植物造成的伤害。,生理干旱:土壤水分不缺少,因土壤低温,土壤溶液浓度过高或积累有毒物质,而难以吸收。,伤害:脱水和高温伤害,一、干旱对植物的伤害及其原因,(一)植物各部位间水分重新分布,幼叶向老叶夺水,加速衰老;成熟部位从胚胎夺水。,(二)影响植物各种生理过程,蒸腾减弱,气孔关闭,光合下降,严重时叶绿体解体。呼吸作用的氧化磷酸化解偶联。吸水过程及物质运输受阻。生长抑制。,(三)破坏正常代谢过程,抑制合成代谢,加强分解代谢。促进生长发育植物激素减少,抑制生长发育激素则增加。发生代谢紊乱。,骆驼蓬,(四)干旱的直观影响,叶片,幼茎萎蔫,临时叶肉细胞 失水,永久原生质 脱水,二、干旱伤害的机理,(一)机械损伤学说,细胞脱水时,细胞壁与原生质粘连在一块收缩,细胞壁韧性有限而形成许多锐利的折叠,原生质体被折叠的壁刺破。,细胞复水时,因细胞壁吸水速度快于原生质,原生质可能被撕破,导致细胞死亡。,(二)蛋白质变性学说,(同硫氢基假说),(三)膜透性的改变,脱水时膜脂分子排列紊乱,膜上出现空隙或龟裂,透性加大,电解质外渗。,(四)活性氧伤害加强,干旱状态下,活性氧的产生增多,而活性氧系统的清除能力减弱。过量的活性氧对膜、蛋白及核酸等造成伤害。,三、植物对干旱的适应方式,植物对干旱的适应,避旱性,御旱性,耐旱性,指植物整个生长发育过程不与干旱逆境相遇,逃避干旱的危害。如沙漠中的短命植物。,指植物在细胞与环境之间形成某种屏障(逆境排外),具有防御干旱的能力,在干旱逆境下各种生理生化过程仍保持正常状态。如形成强大根系、气孔关闭等。,指在干旱逆境下植物可通过代谢反应阻止、降低或者修复由水分亏缺造成的损伤,使其保持较正常的生理状态。如渗透调节、保护大分子等。,作物抗旱性的形态特征和生理特征:,形态特征,生理特征,根系发达而深扎,根/冠比大(更有效地利用土壤水分,特别是土壤深处水分,保持水分平衡),增加叶片表面的蜡面沉积(减少水分蒸腾),叶片细胞小(可减少细胞收缩产生的机械损害),叶脉致密,单位面积气孔数目多(加强蒸腾,有利吸水)。,保持细胞较高的亲水能力,细胞液渗透势低(抗过度脱水-生理性抗旱基础);各种水解酶活性保持稳定,减少大分子分解,保持原生质体质膜不受破坏,具较高弹性与粘性,代谢维持稳定。,作物抗旱性指标:根/冠比(越大,越抗旱,否则不抗旱)保水能力或抗脱水能力 脯氨酸,甜菜碱,脱落酸含量,四、提高植物抗旱性的途径与措施,(一)抗旱锻炼,给予植物以亚致死剂量的干旱条件,使植物经受一定时间的干旱磨炼,提高其抗干旱能力的过程,叫做抗旱锻炼。,如种子萌发时进行反复干旱;“蹲苗”,搁苗,饿苗。,(二)合理使用矿质肥料,磷肥和钾肥均能提高植物抗旱性,氮素过多对作物抗旱不利。,(三)化学控制和使用生长调节剂,矮壮素(CCC)等可提高作物抗旱性。,抗蒸腾剂减少蒸腾失水。,(四)抗旱品种的选育,第四节 植物的抗盐性,盐害(salt injury):土壤中盐分过多对植物造成的伤害,盐碱土,盐土:含NaCI和Na2SO4为主的土壤,碱土:含Na2CO3和NaHCO3为主的土壤,植物对盐渍的适应与抵抗能力称为抗盐性(salt resistance)。,根据植物对盐分适应能力,盐生植物:肉质化,盐分累积在 液泡,生长盐度1.52.0%,如碱蓬、海蓬子等,淡(甜)土植物:决大多数农作物。耐盐范围 0.2%0.8%,梭梭,一、盐分过多对植物的伤害及其原因,(一)渗透胁迫引起生理干旱,土壤中盐分过多使土壤溶液水势下降,导致植物吸水困难,甚至体内水分有外渗的危险,造成生理干旱。,(二)离子失调导致毒害作用,高浓度 NaCl 可置换细胞膜结合Ca2+,膜结合Na+/Ca2+增加,膜结构破坏,功能也改变,细胞内K+、磷和有机溶质外渗。,(四)胁迫效应破坏正常代谢,光合下降,叶绿体解体;蛋白质合成受抑制,但分解加强,产生有毒产物,对细胞产生毒害。,植物由于过多吸收某种盐类而排斥对另一些矿质盐的吸收,导致营养缺乏或产生毒害作用。,(三)膜透性改变,二、植物对盐渍的适应机理,分避盐与耐盐,(一)避盐的机理,植物通过某种方式将细胞内盐分控制在伤害阈值之下,以避免盐分过多对细胞伤害。,包括泌盐、稀盐和拒盐三种方式。,1泌盐,2稀盐,3拒盐,植物根细胞对某些盐离子透性低,降低地上部盐分浓度-芦苇。,植物通过吸收大量水分和加速生长,稀释细胞内盐分浓度红树。,通过盐腺排泄到茎叶表面,再被冲刷掉。如柽柳、匙叶草等,锁阳,植物的泌盐腺现象 五蕊柽柳(A)叶泌盐现象和滨藜(B)叶面泌盐腺体,柽柳,(二)耐盐机理,指通过生理的或代谢的适应,忍受已进入细胞的盐分。,1通过渗透调节以适应盐分过多而产生的水分胁迫,2能消除盐分对酶或代谢产生的毒害作用,高盐条件下保持一些酶活性稳定。,3通过代谢产物与盐类结合减少盐离子对原生质的破坏作用,如细胞中的清蛋白提高亲水胶体对盐类凝固作用的抵抗力。,4.碳代谢途径的改变,逆境条件:C3 C4 或CAM C4,盐胁迫-诱导PEP羧化酶产生(C3转为CAM途径的重要生理生化标志,盐胁迫引起气孔关闭后植物得以维持碳同化继续运行的适应性表现)。,如 豆瓣绿属(Peperomia)植物、马齿苋科植物(Protulacaria afra)番杏科植物 冰叶日中花(Mesembryanthemum crystallium),一些肉质植物(盐渍或水分胁迫):C3 CAM 型,CAM植物:夜间气孔开放,PEP羧化酶固定CO2 形成草酸,还原为苹果酸贮于液泡。白天苹果酸由液泡释放至胞质中,脱羧形成丙酮酸和 CO2,CO2被RuBP羧化酶/加氧酶重新固定,进入还原戊糖磷酸途径,新疆枸杞,盐胁迫机理,1.生理干旱学说 土壤中盐分过多使土壤溶液水势下降,导致植物吸水困难,甚至体内水分有外渗的危险,造成生理干旱 2.质膜伤害学说 离子胁迫致使植物细胞质膜损伤,胞内大量离子和有机物质外渗,外界有毒离子进入,导致细胞内一系列生理生化反应受到干扰。3.代谢影响学说 胁迫效应破坏正常代谢。光合作用下降,叶绿体解体;蛋白质合成受抑制,但分解加强,产生有毒的产物,对细胞产生毒害,三、提高植物抗盐性的途径,(一)抗盐锻炼,将植物种子按盐分梯度进行一定时间的处理,提高抗盐能力,1)逐渐提高盐浓度的浸种法 1940(苏)植物生理学家:播种前,用0.30.4%NaCl 或CaCl2浸种,显著提高抗盐性(棉花,玉米高粱有效)2)种子驯化法 将种子播到逐渐变化的环境中 进行驯化(由低盐到高盐,连续 几代培养,使其遗传特性改变,适应新的环境条件),马兰,3)矿质元素处理种子 一些微量元素可增加植物体内含糖量,提高渗透势;提高细胞原生质胶体的稳定性和水合能力。盐碱土中生长的植物,降低对微量元素Fe,Mn,P,Ca的吸收,造成缺素症,降低抗盐能力。(1)利用Ca盐处理种子 Ca的作用:补充体内钙缺乏,促进生长;阻止根系对Na+吸收,促进对K+的吸收,避免盐离子毒害;对被Na+分散了的团聚结构的土壤有很好的絮凝作用 播种前,510mMCaCl2浸玉米种46h,晾干后播种(降低质膜透性,叶片Na+含量,增大植株干重)(2)利用Mn盐处理种子 MnSO4(苏,1956):提高小麦抗盐能力,(二)植物生长物质处理,促进植物迅速生长,稀释盐分。,(三)施肥,盐碱土影响植物矿质元素吸收:常表现为缺磷,降低硝酸盐还原和蛋白质合成,产生盐害1)施磷肥 作用多方面:提高细胞结构成分的水化度,细胞质保持胶体-束缚水的能力和原生质的粘性和弹性,降低蒸腾,增加根系发育速度和强度。基肥(秋季深翻,过磷酸钙3040斤/亩);追肥(0.1%磷酸二氢钾喷叶片35次)2)施钙肥 13mM CaSO4加入50mM NaCl营养液中,NaCl 抑制作用完全消失。机理:Ca作用于根细胞质膜,增大其拒Na+能力,避免其毒害,提高抗盐能力,(高肥力下,抗盐能力更大),黑果枸杞,(四)选育抗盐品种,生理指标及其测定 1)细胞质膜透性(Plasma membrane permeability)透性小,外渗物质少,抗盐性大;反之,则小。电导率法测定-细胞外渗物质电导率;火焰光度计测定K+含量 处理样品外渗液电导率 电解质外渗率(%)=100 对照样品杀死后外渗液电导率 处理样品外渗液K+含量 K+外渗率(%)=100 对照样品杀死后外渗液K+含量 2)植物体内渗透剂含量 无机离子:有机化合物:脯氨酸,甜菜碱,甘油,草酸,可溶性碳水化合物,四 植物抗盐性的测定,3)叶绿素含量 盐胁迫-叶绿素与叶绿体蛋白间结合松弛,松弛后叶绿素和不松弛时的溶解性不同;松弛叶绿素-60%乙醇提取,不松弛叶绿素-96%乙醇提取 松弛叶绿素/不松弛叶绿素比值大,抗盐弱;反之,则强,4)超氧物岐化酶(superoxide dismustase-SOD),5)过氧化产物丙二醛(Malon dialdehyde-MDA),6)植物组织的肉质性 肉质化-抗盐性大小(正相关):肉质化程度愈高,避盐能力愈强;反之,则弱。肉质化程度测定方法:叶厚度;鲜重和干重比值-大(高),