欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    湘教版八年级数学下册第一章第6课时ppt课件.ppt

    • 资源ID:2069641       资源大小:784.50KB        全文页数:44页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    湘教版八年级数学下册第一章第6课时ppt课件.ppt

    ,1.3 直角三角形全等的判定,第1章 直角三角形,导入新课,讲授新课,当堂练习,课堂小结,情境引入,1探索并理解直角三角形全等的判定方法“HL”(难点)2会用直角三角形全等的判定方法“HL”判定两个直角三角形全等(重点),SSS,SAS,ASA,AAS,旧知回顾:我们学过的判定三角形全等的方法,导入新课,如图,RtABC中,C=90,直角边是_、_,斜边是_.,AC,BC,AB,思考:,前面学过的四种判定三角形全等的方法,对直角三角形是否适用?,A,B,C,A,B,C,1.两个直角三角形中,斜边和一个锐角对应相等,这两个直角三角形全等吗?为什么?,2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三角形全等吗?为什么?,3.两个直角三角形中,两直角边对应相等,这两个直角三角形全等吗?为什么?,口答:,动脑想一想,我们知道,证明三角形全等不存在SSA定理.,如果这两个三角形都是直角三角形,即C=C=90,且AB=AB,AC=AC,现在能判定ABCABC吗?,动脑想一想,我们知道,证明三角形全等不存在SSA定理.,任意画一个RtABC,使C=90.再画一个RtA B C,使C=90,BC=BC,A B=AB,把画好的RtAB C 剪下来,放到RtABC上,它们能重合吗?,作图探究,讲授新课,画图思路,(1)先画M C N=90,画图思路,(2)在射线CM上截取BC=BC,B,画图思路,(3)以点B为圆心,AB为半径画弧,交射线CN于A,B,A,画图思路,(4)连接AB,B,A,思考:通过上面的探究,你能得出什么结论?,在RtABC和RtABC中AB=AB,AC=AC,根据勾股定理,BC2=AB2AC2,BC2=AB2AC2,BC=BC.RtABCRtABC.,证明猜想,“斜边、直角边”定理,文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).,几何语言:,在RtABC和Rt ABC 中,,RtABC Rt ABC(HL).,判断满足下列条件的两个直角三角形是否全等,不全等的画“”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应等(),HL,AAS或ASA,SAS,AAS,AAS,判一判,例1 如图,ACBC,BDAD,ACBD,求证:BCAD.,证明:ACBC,BDAD,C与D都是直角.,在 RtABC 和RtBAD 中,,RtABCRtBAD(HL).BCAD.,变式1:如图,ACB=ADB=90,要证明ABC BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(1)()(2)()(3)()(4)(),AD=BC,DAB=CBA,BD=AC,DBA=CAB,HL,HL,AAS,AAS,如图,AC、BD相交于点P,ACBC,BDAD,垂足分别为C、D,AD=BC.求证:AC=BD.,变式2,HL,AC=BD,RtABDRtBAC,如图:ABAD,CDBC,AB=CD,判断AD和BC的位置关系.,变式3,HL,ADB=CBD,RtABDRtCDB,ADBC,例2 如图,已知AD,AF分别是两个钝角ABC和ABE的高,如果ADAF,ACAE.求证:BCBE.,证明:AD,AF分别是两个钝角ABC和ABE的高,且ADAF,ACAE,RtADCRtAFE(HL)CDEF.ADAF,ABAB,RtABDRtABF(HL)BDBF.BDCDBFEF.即BCBE.,方法总结:证明线段相等可通过证明三角形全等解决,“HL”定理是直角三角形全等独有的判定方法所以直角三角形全等的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件,例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角B和F的大小有什么关系?,解:在RtABC和RtDEF中,RtABCRtDEF(HL).,B=DEF(全等三角形对应角相等).,DEF+F=90,B+F=90.,1.判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等 B.斜边和一锐角对应相等 C.斜边和一条直角边对应相等 D.两个锐角对应相等,D,A,当堂练习,2.如图,在ABC中,ADBC于点D,CEAB于点 E,AD、CE交于点H,已知EHEB3,AE4,则 CH的长为()A1 B2 C3 D4,4.如图,在ABC中,已知BDAC,CE AB,BD=CE.求证:EBCDCB.,证明:BDAC,CEAB,BEC=BDC=90.,在 RtEBC 和RtDCB 中,,RtEBCRtDCB(HL).,3.如图,ABC中,AB=AC,AD是高,则ADB与ADC(填“全等”或“不全等”),根据是(用简写法).,全等,HL,5.如图,AB=CD,BFAC,DEAC,AE=CF.求证:BF=DE.,证明:BFAC,DEAC,BFA=DEC=90.AE=CF,AE+EF=CF+EF.即AF=CE.在RtABF和RtCDE中,,RtABFRtCDE(HL).,BF=DE.,如图,AB=CD,BFAC,DEAC,AE=CF.求证:BD平分EF.,变式训练1,RtABFRtCDE(HL).,BF=DE,RtGBFRtGDE(AAS).,BFG=DEG,BGF=DGE,FG=EG,BD平分EF,如图,AB=CD,BFAC,DEAC,AE=CF.想想:BD平分EF吗?,变式训练2,C,RtABFRtCDE(HL).,BF=DE,RtGBFRtGDE(AAS).,BFG=DEG,BGF=DGE,FG=EG,BD平分EF,6.如图,有一直角三角形ABC,C90,AC10cm,BC5cm,一条线段PQAB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时ABC才能和APQ全等?,【分析】本题要分情况讨论:(1)RtAPQRtCBA,此时APBC5cm,可据此求出P点的位置(2)RtQAPRtBCA,此时APAC,P、C重合,解:(1)当P运动到APBC时,CQAP90.在RtABC与RtQPA中,PQAB,APBC,RtABCRtQPA(HL),APBC5cm;,能力拓展,判断满足下列条件的两个直角三角形是否全等,不全等的画“”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应等(),HL,AAS或ASA,SAS,AAS,AAS,判一判,例1 如图,ACBC,BDAD,ACBD,求证:BCAD.,证明:ACBC,BDAD,C与D都是直角.,在 RtABC 和RtBAD 中,,RtABCRtBAD(HL).BCAD.,变式1:如图,ACB=ADB=90,要证明ABC BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(1)()(2)()(3)()(4)(),AD=BC,DAB=CBA,BD=AC,DBA=CAB,HL,HL,AAS,AAS,如图,AC、BD相交于点P,ACBC,BDAD,垂足分别为C、D,AD=BC.求证:AC=BD.,变式2,HL,AC=BD,RtABDRtBAC,如图:ABAD,CDBC,AB=CD,判断AD和BC的位置关系.,变式3,HL,ADB=CBD,RtABDRtCDB,ADBC,例2 如图,已知AD,AF分别是两个钝角ABC和ABE的高,如果ADAF,ACAE.求证:BCBE.,证明:AD,AF分别是两个钝角ABC和ABE的高,且ADAF,ACAE,RtADCRtAFE(HL)CDEF.ADAF,ABAB,RtABDRtABF(HL)BDBF.BDCDBFEF.即BCBE.,方法总结:证明线段相等可通过证明三角形全等解决,“HL”定理是直角三角形全等独有的判定方法所以直角三角形全等的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件,例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角B和F的大小有什么关系?,解:在RtABC和RtDEF中,RtABCRtDEF(HL).,B=DEF(全等三角形对应角相等).,DEF+F=90,B+F=90.,1.判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等 B.斜边和一锐角对应相等 C.斜边和一条直角边对应相等 D.两个锐角对应相等,D,A,当堂练习,2.如图,在ABC中,ADBC于点D,CEAB于点 E,AD、CE交于点H,已知EHEB3,AE4,则 CH的长为()A1 B2 C3 D4,4.如图,在ABC中,已知BDAC,CE AB,BD=CE.求证:EBCDCB.,证明:BDAC,CEAB,BEC=BDC=90.,在 RtEBC 和RtDCB 中,,RtEBCRtDCB(HL).,3.如图,ABC中,AB=AC,AD是高,则ADB与ADC(填“全等”或“不全等”),根据是(用简写法).,全等,HL,5.如图,AB=CD,BFAC,DEAC,AE=CF.求证:BF=DE.,证明:BFAC,DEAC,BFA=DEC=90.AE=CF,AE+EF=CF+EF.即AF=CE.在RtABF和RtCDE中,,RtABFRtCDE(HL).,BF=DE.,如图,AB=CD,BFAC,DEAC,AE=CF.求证:BD平分EF.,变式训练1,RtABFRtCDE(HL).,BF=DE,RtGBFRtGDE(AAS).,BFG=DEG,BGF=DGE,FG=EG,BD平分EF,如图,AB=CD,BFAC,DEAC,AE=CF.想想:BD平分EF吗?,变式训练2,C,RtABFRtCDE(HL).,BF=DE,RtGBFRtGDE(AAS).,BFG=DEG,BGF=DGE,FG=EG,BD平分EF,6.如图,有一直角三角形ABC,C90,AC10cm,BC5cm,一条线段PQAB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时ABC才能和APQ全等?,【分析】本题要分情况讨论:(1)RtAPQRtCBA,此时APBC5cm,可据此求出P点的位置(2)RtQAPRtBCA,此时APAC,P、C重合,解:(1)当P运动到APBC时,CQAP90.在RtABC与RtQPA中,PQAB,APBC,RtABCRtQPA(HL),APBC5cm;,能力拓展,(2)当P运动到与C点重合时,APAC.在RtABC与RtPQA中,PQAB,APAC,RtQAPRtBCA(HL),APAC10cm,当AP5cm或10cm时,ABC才能和APQ全等,【方法总结】判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解,课堂小结,“斜边、直角边”,内容,斜边和一条直角边对应相等的两个直角三角形全等.,前提条件,在直角三角形中,

    注意事项

    本文(湘教版八年级数学下册第一章第6课时ppt课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开