二次函数与一元二次方程ppt课件.pptx
22.2二次函数与一元二次方程,二次函数的一般式:,(a0),_是自变量,_是_的函数。,x,y,x,当 y=0 时,,ax+bx+c=0,ax+bx+c=0,这是什么方程?,是我们已学习的“一元二次方程”,一元二次方程根的情况与b-4ac的关系?,(a0),我们知道:代数式b2-4ac对于方程的根起着关键的作用.,一元二次方程根的情况与b-4ac的关系,探究一:二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0有什么关系?,1、一次函数y=kx+b与一元一次方程kx+b=0有什么关系?,2、你能否用类比的方法猜想二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的关系?,以 40 m/s的速度将小球沿与地面成 30角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h(单位:m)与飞行时间 t(单位:s)之间具有关系:h=20 t 5 t 2 考虑下列问题:(1)球的飞行高度能否达到 15 m?若能,需要多少时间?(2)球的飞行高度能否达到 20 m?若能,需要多少时间?(3)球的飞行高度能否达到 20.5 m?为什么?(4)球从飞出到落地要用多少时间?,解:(1)当 h=15 时,,20 t 5 t 2=15,t 2 4 t 3=0,t 1=1,t 2=3,当球飞行 1s 和 3s 时,它的高度为 15m.,1s,3s,15 m,以 40 m/s的速度将小球沿与地面成 30角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h(单位:m)与飞行时间 t(单位:s)之间具有关系:h=20 t 5 t 2 考虑下列问题:(1)球的飞行高度能否达到 15 m?若能,需要多少时间?,(2)当 h=20 时,,20 t 5 t 2=20,t 2 4 t 4=0,t 1=t 2=2,当球飞行 2s 时,它的高度为 20m.,2s,20 m,以 40 m/s的速度将小球沿与地面成 30角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h(单位:m)与飞行时间 t(单位:s)之间具有关系:h=20 t 5 t 2 考虑下列问题:(2)球的飞行高度能否达到 20 m?若能,需要多少时间?,(3)当 h=20.5 时,,20 t 5 t 2=20.5,t 2 4 t 4.1=0,因为(4)244.1 0,所以方程无实根。球的飞行高度达不到 20.5 m.,20.5 m,以 40 m/s的速度将小球沿与地面成 30角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h(单位:m)与飞行时间 t(单位:s)之间具有关系:h=20 t 5 t 2 考虑下列问题:(3)球的飞行高度能否达到 20.5 m?为什么?,(4)当 h=0 时,,20 t 5 t 2=0,t 2 4 t=0,t 1=0,t 2=4,当球飞行 0s 和 4s 时,它的高度为 0m,即 0s时,球从地面飞出,4s 时球落回地面。,0s,4s,0 m,以 40 m/s的速度将小球沿与地面成 30角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h(单位:m)与飞行时间 t(单位:s)之间具有关系:h=20 t 5 t 2 考虑下列问题:(4)球从飞出到落地要用多少时间?,从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?,一般地,当y取定值时,二次函数为一元二次方程。,如:y=5时,则5=ax2+bx+c就是一个一元二次方程。,自由讨论,例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.,就是求方程3=-X2+4x的解,例如,解方程X2-4x+3=0,就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.,已知二次函数值,求自变量的值,解一元二次方程的根,二次函数与一元二次方程的关系(1),1、二次函数y=x2+x-2,y=x2-6x+9,y=x2 x+1的图象如图所示。,(1).每个图象与x轴有几个交点?(2).一元二次方程?x2+x-2=0,x2-6x+9=0有几个根?验证一下一元二次方程x2 x+1=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与 一元二次方程ax2+bx+c=0的根有什么关系?,答:2个,1个,0个,边观察边思考,(3),二次函数y=ax2+bx+c的图象和x轴交点的坐标与 一元二次方程ax2+bx+c=0的根有什么关系?,(-2,0),(1,0),x1=-2,x2=1,(3,0),x1=x2=3,无交点,无实根,抛物线y=ax2+bx+c与x轴交点的横坐标是方程ax2+bx+c=0的根。,归纳,一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0),下列二次函数的图象与 x 轴有交点吗?若有,求出交点坐标.(1)y=2x2x3(2)y=4x24x+1(3)y=x2 x+1,令 y=0,解一元二次方程的根,(1)y=2x2x3,解:当 y=0 时,,2x2x3=0,(2x3)(x1)=0,x 1=,x 2=1,所以与 x 轴有交点,有两个交点。,y=a(xx1)(x x 2),二次函数的交点式,(2)y=4x2 4x+1,解:当 y=0 时,,4x2 4x+1=0,(2x1)2=0,x 1=x 2=,所以与 x 轴有一个交点。,(3)y=x2 x+1,解:当 y=0 时,,x2 x+1=0,所以与 x 轴没有交点。,因为(-1)2411=3 0,确定二次函数图象与 x 轴的位置关系,解一元二次方程的根,二次函数与一元二次方程的关系(2),有两个根有一个根(两个相同的根)没有根,有两个交点有一个交点没有交点,b2 4ac 0,b2 4ac=0,b2 4ac 0,二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系,ax2+bx+c=0 的根,y=ax2+bx+c 的图象与x轴,若抛物线 y=ax2+bx+c 与 x 轴有交点,则_。,b2 4ac 0,0,=0,0,o,x,y,=b2 4ac,0,=0,0,o,x,y,=b2 4ac,二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系:,有两个交点,有两个不相等的实数根,只有一个交点,有两个相等的实数根,没有交点,没有实数根,b2 4ac 0,b2 4ac=0,b2 4ac 0,与x轴有两个不同的交点(x1,0)(x2,0),有两个不同的解x=x1,x=x2,b2-4ac0,与x轴有唯一个交点,有两个相等的解x1=x2=,b2-4ac=0,与x轴没有交点,没有实数根,b2-4ac0,2.抛物线y=2x2-3x-5 与x轴有无交点?若无说出理由,若有求出交点坐标?,1.一元二次方程 3 x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3 x2+x-10与x轴的交点坐标是.,归纳:一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0),(2.5,0),(-1,0),(-2,0)(5/3,0),有,牛刀小试,1.不与x轴相交的抛物线是()A.y=2x2 3 B.y=2 x2+3 C.y=x2 3x D.y=2(x+1)2 3,2.若抛物线 y=ax2+bx+c=0,当 a0,c0时,图象与x轴交点情况是()A.无交点 B.只有一个交点 C.有两个交点 D.不能确定,D,C,3.如果关于x的一元二次方程 x22x+m=0有两个相等的实数根,则m=,此时抛物线 y=x22x+m与x轴有个交点.,4.已知抛物线 y=x2 8x+c的顶点在 x轴上,则 c=.,1,1,16,5.若抛物线 y=x2+bx+c 的顶点在第一象限,则方程 x2+bx+c=0 的根的情况是.,b24ac 0 无实数根,6.抛物线 y=2x23x5 与y轴交于点,与x轴交于点.,7.一元二次方程 3 x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数 y=3 x2+x10与x轴的交点坐标是.,(0,-5),(5/2,0)(1,0),(-2,0)(5/3,0),8.已知抛物线y=ax2+bx+c的图象如图,则关于x的方程ax2+bx+c3=0根的情况是()A.有两个不相等的实数根 B.有两个异号绝对值相等的实数根 C.有两个相等的实数根 D.没有实数根,x,A,1.3,.,9.已知抛物线 和直线 相交于点P(3,4m)。(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标。,解:(1)因为点P(3,4m)在直线 上,所以,解得m1 所以,P(3,4)。因为点P(3,4)在抛物线 上,所以有41824k8 解得 k2 所以(2)依题意,得解这个方程组,得 所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5)。,试一试,C,A,?,(4)已知二次函数y=ax+bx+c的图象如图所示,则一元二次方程ax+bx+c=0的解是.,X,Y,0,5,2,2,(5)若抛物线y=ax2+bx+c,当 a0,c0时,图象与x轴交点情况是()A 无交点 B 只有一个交点 C 有两个交点 D不能确定,C,X1=0,x2=5,(6)如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=,此时抛物线 y=x2-2x+m与x轴有个交点.,(7)已知抛物线 y=x2 8x+c的顶点在 x轴上,则c=.,1,1,16,(8)一元二次方程 3 x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3 x2+x-10与x轴的交点坐标是.,(-2、0)(5/3、0),练习:,1、抛物线y=x2-x+m与x轴有两个交点,则m的取值范围是。,2、如果关于x的方程x2-2x+m=0有两个相等的实数根,此时抛物线y=x2-2x+m与x轴有 个交点。,3、抛物线y=x2-kx+k-2与x轴交点个数为()A、0个 B、1个 C、2个 D、无法确定,亮出你的风采,亮出你的风采,?,5、已知二次函数y=x2-mx-m2(1)求证:对于任意实数m,该二次函数的图像与x轴总有公共点;(2)该二次函数的图像与x轴有两个公共点A、B,且A点坐标为(1、0),求B点坐标。,再见,