欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    电磁学教学第三章课件.ppt

    • 资源ID:2027127       资源大小:637.50KB        全文页数:60页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电磁学教学第三章课件.ppt

    第三章 稳恒电流,1、电流 电流密度2、电源 电动势3、复杂电路与基尔霍夫定律,1电流和电流密度2电流的连续性方程 3欧姆定律,焦耳定律4电源和电动势5含源电路的欧姆定律 6基尔霍夫定律,1,第三章 稳恒电流1、电流 电流密度1电流和电流密度1,静电场中的导体处于静电平衡时,其内部的场强为零,内部没有电荷作定向的宏观运动。,如果把导体接在电源的两极上,则导体内任意两点之间将维持恒定的电势差,在导体内维持一个电场,导体内的电荷在电场力的作用下作宏观的定向运动,形成电流。,2,静电场中的导体处于静电平衡时,其内部的场强为零,内部没有电荷, 电流 电流密度,电流的微观机制:导体内自由电子在电场力作用下在原来 不规则的热运动上附加了定向漂移运动.,1800年春,意大利人伏打制成了伏打电池,从而获得持续的电流。有了稳定的电源,就为人类从研究静电现象过渡到研究动电现象提供了坚实的技术基础。,3, 电流 电流密度 一、电流电荷的定向运动形成电流,二、电流强度与电流密度,单位:,4,二、电流强度与电流密度 1. 电流强度:单位时间内通过导体,电流密度与电荷运动速度的关系,n导体中自由电子的数密度e电子的电量vd假定每个电子的漂移速度在时间间隔dt内,长为dl=vddt、横截面积为S 的圆柱体内的自由电子都要通过横截面积S,所以此圆柱体内的自由电子数为nSvddt,电量为dq=neSvddt通过此导体的电流强度为,电流强度与电子漂移速度的关系,5,电流密度与电荷运动速度的关系n导体中自由电子的数密度电流,电流密度是一个矢量,其方向和该点正电荷运动的方向一致,数值上等于通过该点单位垂直截面的电流强度。 电流密度矢量构成的矢量场称之为电流场。,3. 电流线:用电流线描述电流场 曲线方向:该点电流密度方向; 曲线密度:与该点电流密度的大小成正比。,2. 电流密度矢量,定义,电流强度是标量,它只能描述导体中通过某一截面的整体特征.为反映导体中各处电荷定向运动的情况,需引入电流密度概念.,与电荷运动速度的关系,6,电流密度是一个矢量,其方向和该点正电荷运动的方向,三、 电流的连续性方程,左侧:单位时间内由S 面流出的电量;右侧:单位时间内S 面的电量减少量。,7,三、 电流的连续性方程左侧:单位时间内由S 面流出的电量;,恒定电流的电流线不可能在任何地方中断,它们永远是闭合曲线。,2. 电流的恒定条件,利用数学上的高斯定理,8,恒定电流的电流线不可能在任何地方中断,它们永远是闭合曲线。2,欧姆定律对金属或电解液成立。对于半导体、气体等不成立,对于一段含源的电路也不成立。,G 电导(S西门子)R=1/G电阻(欧姆),1、电阻率,欧姆定律,欧姆(Georg Simom Ohm,1787-1854)德国物理学家,在1827年发现了以他名字命名的欧姆定律。 电流和电阻这两个术语也是由欧姆提出的。,四 电阻率,欧姆定律,9,欧姆定律对金属或电解液成立。 G 电导(S西门,2、电阻定律,对于粗细均匀的导体,当导体的材料与温度一定时,导体的电阻与它的长度l 成正比,与它的横截面积S成反比,r :电阻率 =1/r :电导率,3、电阻与温度的关系,a 叫作电阻的温度系数,单位为K-1,与导体的材料有关。,电阻率的数量级:纯金属:10-8W .m 合金:10-6W .m半导体:10-510-6W .m绝缘体:1081017W .m,r 小用来作导线r 大用来作电阻丝a 小制造电工仪表和标准电阻a 大金属电阻温度计,10,2、电阻定律对于粗细均匀的导体,当导体的材料与温度一定时,导,超导现象的几个概念:有些金属在某些温度下,其电阻会突变为零。这个温度称为超导的转变温度,上述现象称为超导现象。在一定温度下能产生零电阻现象的物质称为超导体。,4、超导现象 超导体最早是由荷兰物理学家昂尼斯于1911年发现的。他利用液态氦的低温条件,测定在低温下电阻随温度的变化关系,观察到汞在4.2K附近时,电阻突然减少到零,变成了超导体。在低温物理作出的杰出贡献,获得1913年诺贝尔物理学奖。,迄今为止,已发现28种金属元素(地球的常态下)以及合金和化合物具有超导电性。还有一些元素只高压下具有超导电性。提高超导临界温度是推广应用的重要关键之一。超导的特性及应用有着广阔的前景。,11,超导现象的几个概念:4、超导现象迄今为止,已发现28种金属元,在导体中取一长为dl、横截面积为dS的小圆柱体,圆柱体的轴线与电流流向平行。设小圆柱体两端面上的电势为V和V+dV。根据欧姆定律,通过截面dS的电流为:,欧姆定律的微分形式:通过导体中任一点的电流密度,等于该点的场强与导体的电导率之积,说明: 欧姆定律的微分形式 对非稳恒电流也成立.,5、欧姆定律的微分形式,12,在导体中取一长为dl、横截面积为dS的小圆柱体,圆柱体的轴线,例1、一块扇形碳制电极厚为 t,电流从半径为 r1的端面 S1流向半径为 r2的端面 S2,扇形张角为,求:S1 和 S2面之间的电阻。解:,dr 平行于电流方向,dS 垂直于电流方向。,13,例1、一块扇形碳制电极厚为 t,电流从半径为 r1的端面 S,1、J法向分量的连续性,导体2,导体1,对恒定电流,对图中的闭合曲面,6、两种导体分界面上的边界条件,14,1、J法向分量的连续性导体2导体1对恒定电流对图中的闭合曲面,2、 E切向分量的连续性,介质2,介质1,15,2、 E切向分量的连续性介质2介质115,导体2,导体1,根据边界条件,由欧姆定律,讨论:,7、电流线在导体界面上的折射,16,导体2导体1 根据边界条件 由欧姆定律 讨论:7、电流线在导,五、焦耳楞次定律,在一段纯电阻电路中,电功等于电热。但在非纯电阻电路中(如含有电动机等输出设备)电功和电热两者不相等。,电流通过一段电路时,电场力要对移动电荷做功,电功率则为,17,五、焦耳楞次定律 在一段纯电阻电路中,电功等于电热。,表明:在导体中某点的热功率密度与该点的电场强度的平方成正比,也与导体的电导率成正比。,热功率密度:纯电阻导体内单位体积内的热功率。,焦耳楞次定律的微分形式,18,表明:在导体中某点的热功率密度与该点的电场强度的平,欧姆定律的经典解释,金属内自由电子在电场E作用下,会在热运动的同时逆电场E的方向附加一个定向加速度,六、经典金属电子论,金属导体的微观电结构图像(自由电子模型): 金属具有晶格点阵结构; 电场力作用下电子的无规热运动附加了定向运动; 大量电子不断地与晶格碰撞。,自由电子的定向运动是一段一段加速运动的衔接,各段加速运动都从定向速度为0开始。,19,欧姆定律的经典解释 金属内自由电子在电场E作用下,会在,自由电子同原子实碰撞,只能在连续两次碰撞的时间间隔内得以定向加速,从统计角度考虑,平均定向运动速度为,若导体内自由电子(载流子)密度为n,则,由经典电子论导出的结果只能定性说明金属导电的规律由上式计算出的电导率与实际相差甚远.这些困难需要量子理论来解决。,20,自由电子同原子实碰撞,只能在连续两次碰撞的时间间隔内,作业: 两同轴铜质圆形套管,长为L,内圆柱的半径a,外圆柱的半径为b,两圆柱间充以电阻率为 的石墨。若以内、外圆柱分别为一个电极,求石墨的电阻。,解:两根铜管分别作为一个等势面,电流 沿着径向由一个圆筒流向另一个圆筒, 根据对称性,通过各柱面的I是相等的,故,21,作业: 两同轴铜质圆形套管,长为L,内圆柱的解:两根铜管分别,两极间的电势差为,22,两极间的电势差为作业 图中所示是电学仪器中调节电阻的装, 电源 电动势,为维持恒定电流,除了静电场外,必须有非静电力,使正电荷逆着电场力的方向运动,从低电势处返回高电势处,同时,用其它形式的能量补偿焦耳热的损失。,23, 电源 电动势IRAB 一、电源 电,闭合电路的电流方向和电势的变化,(1)在外电路中,沿电流方向电势降低(2)在内电路中,沿电流方向电势升高,A,B,C,D,I,I,外电路电流由正极流向负极,内电路电流由负极流向正极,24,ab闭合电路的电流方向和电势的变化(1)在外电路中,沿电流方,电 源,+ +,-,v,F电,F非,W电0,W非0,化学能转化为电势能,外电路中,电场力是做正功的,电荷的电势能减小。,25,电 源 +-+vF电F非W电0化学能转化为电势能,二、电源的电动势,设K表示作用在单位正电荷上的非静电力,其方向在电源内与电场E的方向相反,量纲、单位相同。在有电场E和非电场力K同时存在的电路中(如电源内),应把欧姆定律推广为普遍形式的欧姆定律:,在实际应用中,常用电动势 反映电源中非静电力做功的本领。其定义为将单位正电荷从负极经电源内部到正极时非静电力所做的功,即,就是衡量电源转换能量的能力大小的物理量。,26,二、电源的电动势 设K表示作用在单位正电荷上的非,利用欧姆定律,得,全电路欧姆定律,在闭合回路中,静电力和非静电力作的功为,而,27,利用欧姆定律,得全电路欧姆定律在闭合回路中,静电力和非静电力,说明:,1、 是外电路上总的电势降落,叫路端电压.,2、 是内电路上的电势降落,叫内电压.,电动势等于内外电路电势降落之和。,28,说明: 1、 是外电路上总的,闭合电路的十个图象,一、U-I关系图象,短路状态,短路状态,外电压与总电流的关系:,开路状态,内电压,29,闭合电路的十个图象一、U-I关系图象短路状态短路状态外电压与,二 、U-R关系图象,0,U,R,0,短路状态,断路状态,r,30,二 、U-R关系图象0UR0短路状态断路状态r30,0,开路状态,短路状态,三、 I-R关系图象,I,R,31,0开路状态短路状态三、 I-R关系图象 IR31,0,总,外,内,外,r,P,R,四、P-R关系图象,32,0总外内外rPR四、P-R关系图象32,0,总,外,内,五、P-U关系图象,P,U,33,0总外内五、P-U关系图象PU33,0,总,外,内,六、P-I关系图象,P,I,外,E2/r,E2/4r,34,0总外内六、P-I关系图象PI外E2/rE2/4r34,0,开路状态,短路状态,1,七、效率-R关系图象,效率,R,35,0开路状态短路状态1七、效率-R关系图象效率R35,1,0,八、效率-U关系图象,E,U,效率,36,10八、效率-U关系图象EU效率36,1,0,I,效率,九、效率-I关系图象,37,10I效率九、效率-I关系图象37,0,60,50,40,30,1,2,3,4,5,6,120,80,40,十、组合图象,如图所示的图线表示某电池组的输出电压与电流的关系(图线),图线表示其输出功率与电流的关系(图线)。则下列说法正确的是( ) A)电池组的电动势为60V。B)电池组的内阻为10欧。C)电流为2.5A时,外电路的电阻为14欧。D)输出功率为80W时,输出电压可能为40V。,U/V,I/A,P/W,20,10,38,0605040301234561208040十、组合图象如图,作业,39,作业UI0一0UR二0三IR0四rPR0五PU0六IP0七1,三、一段含源电路的欧姆定律,如图所示,在一段含源的电路中,将上式从a端经电源到b端线积分,得,R,a,b,c, 放电,R,a,b,c, 充电,40,三、一段含源电路的欧姆定律如图所示,在一段含源的电路中将上,积分时注意到,电路 中 与 方向相反,电路中 与 方向相同,而 与 的方向相反,故得,(放电),(充电),上式即为一段含源电路的欧姆定律.,此时是电源正、负极间的电势差,称为电源的端电压。,若R=0,则有,41,积分时注意到,电路 中 与,电源的电动势与端电压的区别:,电动势:非静电力做功,仅取决于电源本身的性质,与外电 路性质及是否接通无关;端电压:从正极到负极时静电力所做的功,与外电路的情况 有关。,一段含源电路的欧姆定律的一般计算式为,符号约定:先任意选取沿电路线积分的方向,写出初末 两端点的电势差, 若通过电阻中电流的流向与积分路径的方向相同,该 电阻上电势降取“+”号,相反则取“-”号.,42,电源的电动势与端电压的区别:电动势:非静电力做功,仅取决于电, 若电动势的指向与积分路径的方向相同,该电动势前 取“+”号,相反则取“-”号.,对电源有,43, 若电动势的指向与积分路径的方向相同,该电动势前例题1,.,电源向负载输出功率最大的条件.,电源向负载输出的功率为,根据求极值的方法,上式称为匹配条件。应当注意,对于一般化学电源,内阻都很小当满足匹配条件时,总电阻很小,会使电流超过额定值,故一般条件不能在匹配条件下使用化学电源。但在电子技术中的某些电源,其内阻很大,考虑匹配是很重要的。,44,.电源向负载输出功率最大的条件.电源向负载输出的功率为根据求,稳恒电路的特点,1)均匀导体内部的宏观电荷密度等于零。2 ) 外电路中,电流线和电力线方向一致。3 ) 在电源内部,电流密度方向由推广的欧姆定理决定。,45,稳恒电路的特点1)均匀导体内部的宏观电荷密度等于零。45,基尔霍夫第一定律:, 复杂电路与基尔霍夫定律,在实际直流电路中,往往碰到多电源多回路的复杂电路。处理复杂电路的基本方法是根据基尔霍夫定律列出一组电路的线性方程,通过解线性方程组解决复杂电路问题。,名词:,支路:由电阻、电源串联而成的电流通路.节点:3条以上支路的连接点.回路:由几条支路组成的闭合电流通路.,如图,在节点处,根据电流的恒定条件,46,基尔霍夫第一定律:I1I3I2 复杂电路与基尔霍,基尔霍夫第一定律一般形式,汇于节点各支路电流强度的代数和为0.,沿任一闭合回路中电动势的代数和等于回路中电阻上电势降落的代数和。,基尔霍夫第二定律,把关于一段含源电路欧姆定律应用到闭合回路上,这时 ,可得,47,基尔霍夫第一定律一般形式汇于节点各支路电流强度的代数和为0.,应用基尔霍夫定律列方程组应注意:, 注意方程的独立性及独立方程数目应等于所求末知量数. 对于n个节点p条支路的复杂电路,可列出(n-1)个独立节点电流方程和(p-n+1)个独立回路电压方程.(在新选定的回路中,必须至少有一段电路在已选的回路中未曾出现过)。, 在给定电路上标定各支路上电流的参考方向., 方程组中各项之前的正负号约定: 对于节点方程,流出节点的电流I之前取正号,流入取负号.对回路方程,首先标定回路绕行方向.若电阻中电流方向与绕行方向一致,电位降落,IR之前加正号,反之加负号.若电动势与绕行方向一致,电位升高, 之前加正号,反之加负号.,48,应用基尔霍夫定律列方程组应注意: 注意方程的独立性及独立,基尔霍夫方程组原则上可以解决任何直流电路问题.为避免方程过多,在具体解题过程中可灵活运用,充分运用基尔霍夫笫一方程组,使未知变量数目尽可能少,从而使问题简化.,如下图所示,在设定 之后,对CA支路可不必再设新的变量 ,直接设它为 ,这样便将三个未知变量减少到两个.,49,基尔霍夫方程组原则上可以解决任何直流电路问题.,整理后联立求解,得到 .由所得结果的正负,判明实际电流的方向。,根据基尔霍夫笫二方程,选择回路ABCDEA和AEDCA,则有,50,整理后联立求解,得到 .,解 设ab间接上电压为U的电源.电路中各处的电流如图所示.应用基尔霍夫笫一定律,有,例题1 五个己知电阻 联接如图,试求a、b间电阻.,51,I1R4R3aR1R2bcdU解 设ab间接上电压为U的,回路cbdc:,回路acbUa:,由式联立解得,取三个独立回路,由基尔霍夫笫二定律得,回路acda:,52,回路cbdc:回路acbUa:由式联立解得 取三,流过a、b两点的电流为,于是得a、b间的电阻为,式中,53,流过a、b两点的电流为于是得a、b间的电阻为式中53,这就是惠斯通电桥的平衡条件,这时,这个结果表明,平衡电桥的电阻 与桥电阻 无关.这个结论在解决一些电路中有用.,讨论 平衡电桥 a、b间的电路也是惠斯通电桥的 电 路.当 时,电桥达到平衡,这时,54,这就是惠斯通电桥的平衡条件,这时 这个结果表明,平,在 的条件下,下面(a)、(b)、(c)三个电路的a、b间的电阻 都相等.,55,R4R3aR1R2b(c) 在,例题2 六个相同的电阻r联接成如图的电路,试求a、b间的电阻 以及a、c间的电阻 .,解图中上边五个r是桥路电阻.根据上题结论,这桥路电阻为r.它与下边的r并联,故 为,因图中的电路构成一个对称的四面体,故由对称性可知,56,例题2 六个相同的电阻r联接成如图的电路,abcrrrr,例题3 推导电阻的Y形联接和 形联接的代换公式,以保持两种联接中任意两对应点之间的总电阻都分别相等,试推导之.,解当Y形电阻与 形电阻等效时,两种联接中任意两对应点之间的总电阻都分别相等.在Y形联接和 形联接的1-2,1-3,2-3之间的总电阻应相等,故,57,例题3 推导电阻的Y形联接和 形联接的代换解当,58,58,例题4 :在右图所示网络中已知R=150 ,求 网络输入电阻.,整个网络输入电阻则为,59,例题4 :在右图所示网络中已知R=150 ,求整个,解法二,将原图中a、b、d点间Y形网络变换成 形,整个网络输入电阻则为,60,解法二将原图中a、b、d点间Y形网络变换成 形R,

    注意事项

    本文(电磁学教学第三章课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开