数学中考《四点共圆型考题》专题复习课件.ppt
四点共圆巧解中考题,考点解读,四点共圆在圆内接四边形综合问题的求解中占据了重要地位,都是在大题中结合题目的几何背景进行综合考查,重在考查学生对知识的应用能力考查的基本类型有:利用四点共圆证相似,利用四点共圆求最值,这些问题大都利用转化思想,将几何问题转化为四点共圆问题,使题目能简单求解.,1.四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”2四点共圆的性质(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等(2)圆内接四边形的对角互补(3)圆内接四边形的一个外角等于它的内对角,方法提炼,方法提炼,3四点共圆的判定(1)用“角”判定:一组对角互补的四边形的四个顶点在同一个圆上;一个外角等于它的内对角的四边形的四个顶点在同一个圆上;如果两个三角形有一条公共边,且位于公共边同侧的两个角相等,则这两个三角形的四个顶点在同一个圆上(2)“等线段”判定:四顶点到同一点的距离相等,若OAOBOCOD,则A,B,C,D四点共圆(3)用“比例线段”判定:若线段AB,CD(或其延长线)交于点P,且PAPCPBPD,则A,B,C,D四点共圆.,课堂精讲,课堂精讲,【分析】连接BD,如图,先利用圆周角定理证明ADEDAC得到FDFA5,再根据正弦的定义计算出EF3,则AE4,DE8,接着证明ADEDBE,利用相似比得到BE16,所以AB20,然后在RtABC中利用正弦定义计算出BC的长 答 案 图,【答案】C,课堂精讲,【方法归纳】若已知圆上四点,常常使用四点共圆的性质,找角之间的转化关系本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径,用“四点共圆”的思想进行角的数量代换,有助于我们更好地解题,课堂精讲,例2如图,正方形ABCD的边长为6,点O是对角线AC,BD的交点,点E在CD上,且DE2CE,过点C作CFBE,垂足为F,连接OF,求OF的长,课堂精讲,课堂精讲,课堂精讲,课堂精讲,答案图,【方法归纳】求线段长常用的方法就是两种:利用相似中的比例线段求线段长或者利用直角三角形中的勾股定理求线段长,课后精练,A,课后精练,2(2018邵阳)如图,四边形ABCD为O的内接四边形,BCD120,则BOD的大小是( ) 第2题图 A80 B120 C100 D90,B,课后精练,3(2019天水)如图,四边形ABCD是菱形,O经过点A,C,D,与BC相交于点E,连接AC,AE.若D80,则EAC的度数为( ) 第3题图 A20 B25 C30 D35,C,课后精练,16,课后精练,课后精练,6如图,AB为圆的直径,AD,BC为圆的两条弦,且BD与AC相交于点E.求证:ACAEBDBEAB2. 第6题图,课后精练,证明:过点E作EFAB于点F.EFB90,C90,EFBC180.B,C,E,F四点共圆AEACAFAB.EFA90,D90,EFAD180.A,D,E,F四点共圆BEBDBFAB.,得AEACBEBDAFABBFAB.AFBFAB,AEACBEBDAB2.,课后精练,课后精练,课后精练,答案图,课后精练,课后精练,解:(1)PD与O相切理由:如图,连接DO并延长交圆于点E,连接AE,DE是直径,DAE90.AEDADE90.PDAABDAED,PDAADE90,即PDDO.PD与O相切于点D.,答案图,课后精练,课后精练,学习了本课后,你有哪些收获和感想?告诉大家好吗?,国虽大,好战必亡;天下虽安,忘战必危.司马法,教师寄语,