人教版八年级下册数学:第十六章二次根式课件.ppt
第十六章 二次根式 建构知识体系,二 次 根 式,加、减乘、除,知识结构,二次根式,最简二次根式,同类二次根式,二次根式的概念,形如(a 0)的式子叫做二次根式, 二次根式的定义:, 二次根式的识别:,()被开方数,()根指数是,例下列各式中那些是二次根式?那些不是?为什么?,抢答:判断下列二次根式是否是最简二次根式,并说明理由。,满足下列两个条件的二次根式,叫做最简二次根式(1)被开方数的因数是整数,因式是整式(2)被开方数中不含能开得尽方的因数或因式。,例:把下列各式化成最简二次根式,下列3组根式各有什么特征?,定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。,二次根式的性质,(1),(2),(3),二次根式加减时,先将二次根式化为最简二次根式,再把被开方数相同的二次根式进行合并。,简单地说:一化,二找,三合并。,二次根式加减法的步骤:,1、将每个二次根式化为最简二次根式;,2、找出其中的同类二次根式;,3、合并同类二次根式。(即系数相加减,被开方数和根指数不变),例题讲解,计算:,解:,(a0,b0),(a0,b0),分母有理化 最简二次根式,计算:,题型1:确定二次根式中被开方数所含字母的取值范围.,1. 当 X _时, 有意义。,3.求下列二次根式中字母的取值范围,解得 - 5x3,说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组),3,a=4,题型2:二次根式的非负性的应用.,4.已知: + =0,求 x-y 的值.,解:由题意,得 x-4=0 且 2x+y=0,解得 x=4,y=-8,x-y=4-(-8)= 4+ 8 =12,已知 ,求 的值。,拓展,拓展,求:(1)a和b的值;(2),原式=4,(2)当a= 2,b=2时,,二次根式-知识体系,谢谢欣赏!,